Karren L More

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/107221/karren-l-more-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

319	28,535	72	165
papers	citations	h-index	g-index
334 ext. papers	32,080 ext. citations	7.2 avg, IF	7.08 L-index

#	Paper	IF	Citations
319	New roads and challenges for fuel cells in heavy-duty transportation. <i>Nature Energy</i> , 2021 , 6, 462-474	62.3	89
318	Effect of Catalyst and Catalyst Layer Composition on Catalyst Support Durability. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 044502	3.9	4
317	Impact of Catalyst Ink Dispersing Solvent on PEM Fuel Cell Performance and Durability. <i>Journal of the Electrochemical Society</i> , 2021 , 168, 044517	3.9	8
316	Deep Learning B ased Workflow for Analyzing Helium Bubbles in Transmission Electron Microscopy Images. <i>Microscopy and Microanalysis</i> , 2021 , 27, 2132-2133	0.5	
315	High radiation tolerance of an ultrastrong nanostructured NiCoCr alloy with stable dispersed nanooxides and fine grain structure. <i>Journal of Nuclear Materials</i> , 2021 , 557, 153316	3.3	2
314	Improving Electronic Conductivity of Layered Oxides through the Formation of Two-Dimensional Heterointerface for Intercalation Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 3835-3844	6.1	12
313	Impact of Polyvinylidene Fluoride on Nanofiber Cathode Structure and Durability in Proton Exchange Membrane Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 054517	3.9	7
312	Recent developments in catalyst-related PEM fuel cell durability. <i>Current Opinion in Electrochemistry</i> , 2020 , 21, 192-200	7.2	75
311	Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements. <i>Nature Communications</i> , 2020 , 11, 1022	17.4	16
310	Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. <i>Small Methods</i> , 2020 , 4, 1900821	12.8	88
309	Microstructural Evolution and ORR Activity of Nanocolumnar Platinum Thin Films with Different Mass Loadings Grown by High Pressure Sputtering. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 134514	3.9	1
308	Oxygen Reduction Reaction Activity of Nanocolumnar Platinum Thin Films by High Pressure Sputtering. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 134508	3.9	1
307	Exchange of Ions across the TiN/TaO Interface during Electroformation of TaO-Based Resistive Switching Devices. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 27378-27385	9.5	1
306	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. <i>Energy and Environmental Science</i> , 2020 , 13, 3544-355	5 ^{35.4}	66
305	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells. <i>Advanced Materials</i> , 2020 , 32, e2003577	24	132
304	Eliminating dissolution of platinum-based electrocatalysts at the atomic scale. <i>Nature Materials</i> , 2020 , 19, 1207-1214	27	57
303	From suppressed void growth to significant void swelling in NiCoFeCr complex concentrated solid-solution alloy. <i>Materialia</i> , 2020 , 9, 100603	3.2	15

302	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. <i>Angewandte Chemie</i> , 2020 , 132, 21882-21889	3.6	6
301	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21698-21705	16.4	55
300	Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene. <i>Frontiers of Chemical Science and Engineering</i> , 2020 , 14, 522-533	4.5	5
299	Electromagnetic Field Reconstructions of 4D-STEM Datasets using Ptychography and Differential Phase Contrast Imaging. <i>Microscopy and Microanalysis</i> , 2019 , 25, 66-67	0.5	
298	Microscopic Analysis of PEMFC Catalyst Layers. <i>ECS Transactions</i> , 2019 , 92, 95-105	1	0
297	Brittle fracture to recoverable plasticity: polytypism-dependent nanomechanics in todorokite-like nanobelts. <i>Nanoscale Advances</i> , 2019 , 1, 357-366	5.1	7
296	Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. <i>Energy and Environmental Science</i> , 2019 , 12, 250-260	35.4	475
295	High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. <i>Energy and Environmental Science</i> , 2019 , 12, 2548-2558	35.4	280
294	Defect evolution in Ni and NiCoCr by in situ 2.8 MeV Au irradiation. <i>Journal of Nuclear Materials</i> , 2019 , 523, 502-509	3.3	8
293	Stable Metallic Enrichment in Conductive Filaments in TaOx-Based Resistive Switches Arising from Competing Diffusive Fluxes. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800954	6.4	22
292	Nanofiber Fuel Cell MEAs with a PtCo/C Cathode. Journal of the Electrochemical Society, 2019, 166, F32	20 3. √532	2 09 5
291	Fuel-Cell Catalyst-Layer Resistance via Hydrogen Limiting-Current Measurements. <i>Journal of the Electrochemical Society</i> , 2019 , 166, F3020-F3031	3.9	49
290	Interpreting Voids in Atom Probe Tomography Data via Experiment and Theory. <i>Microscopy and Microanalysis</i> , 2019 , 25, 290-291	0.5	
289	Resolving Active Sites in Atomically Dispersed Electrocatalysts for Energy Conversion Applications. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2066-2067	0.5	1
288	Investigating Effects of Alloy Chemical Complexity on Helium Bubble Formation by Accurate Segregation Measurements Using Atom Probe Tomography. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1558-1559	0.5	4
287	Elucidation of Fe-N-C electrocatalyst active site functionality via in-situ X-ray absorption and operando determination of oxygen reduction reaction kinetics in a PEFC. <i>Applied Catalysis B: Environmental</i> , 2019 , 257, 117929	21.8	45
286	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 19147-19156	3.6	38
285	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN Sites for Oxygen Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 18971-18980	16.4	207

284	Effects of 3d electron configurations on helium bubble formation and void swelling in concentrated solid-solution alloys. <i>Acta Materialia</i> , 2019 , 181, 519-529	8.4	23
283	Elucidating the Dynamic Nature of Fuel Cell Electrodes as a Function of Conditioning: An ex Situ Material Characterization and in Situ Electrochemical Diagnostic Study. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 45016-45030	9.5	42
282	Atomic-level active sites of efficient imidazolate framework-derived nickel catalysts for CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26231-26237	13	46
281	Dictating Pt-Based Electrocatalyst Performance in Polymer Electrolyte Fuel Cells, from Formulation to Application. <i>ACS Applied Materials & Application</i> , 11, 46953-46964	9.5	41
280	Electrospun Particle/Polymer Fiber Electrodes with a Neat Nafion Binder for Hydrogen/Air Fuel Cells. <i>ECS Transactions</i> , 2019 , 92, 595-602	1	4
279	Improved electrochemical cycling stability of intercalation battery electrodes via control of material morphology. <i>Ionics</i> , 2019 , 25, 493-502	2.7	6
278	Hard-Magnet L10-CoPt Nanoparticles Advance Fuel Cell Catalysis. <i>Joule</i> , 2019 , 3, 124-135	27.8	171
277	Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys. <i>Acta Materialia</i> , 2019 , 164, 283-292	8.4	30
276	Effects of Fe concentration on helium bubble formation in NiFex single-phase concentrated solid solution alloys. <i>Materialia</i> , 2019 , 5, 100183	3.2	16
275	Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. <i>ACS Catalysis</i> , 2018 , 8, 3116-3122	13.1	304
274	PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F3078-F3084	3.9	22
273	Potentiostatic and Potential Cycling Dissolution of Polycrystalline Platinum and Platinum Nano-Particle Fuel Cell Catalysts. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F3178-F3190	3.9	34
272	Durability of Pt-Co Alloy Polymer Electrolyte Fuel Cell Cathode Catalysts under Accelerated Stress Tests. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F3166-F3177	3.9	38
271	ElectroCat: DOE's approach to PGM-free catalyst and electrode R&D. <i>Solid State Ionics</i> , 2018 , 319, 68-76	3.3	82
270	Highly Active, Durable Dispersed Iridium Nanocatalysts for PEM Water Electrolyzers. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F82-F89	3.9	28
269	Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. <i>Advanced Materials</i> , 2018 , 30, 1706758	24	590
268	Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. <i>Nano Energy</i> , 2018 , 44, 476-488	17.1	95
267	Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F3148-F3160	3.9	127

(2017-2018)

266	Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. <i>Nano Energy</i> , 2018 , 48, 217-226	17.1	309
265	Unraveling the Effects of Strontium Incorporation on Barite GrowthIh Situ and Ex Situ Observations Using Multiscale Chemical Imaging. <i>Crystal Growth and Design</i> , 2018 , 18, 5521-5533	3.5	16
264	Formation of the Conducting Filament in TaO -Resistive Switching Devices by Thermal-Gradient-Induced Cation Accumulation. <i>ACS Applied Materials & Devices Sump</i> ; Interfaces, 2018 , 10, 2318	37 ⁹ 2 ⁵ 319	97 ²¹
263	Enhanced Water Management of Polymer Electrolyte Fuel Cells with Additive-Containing Microporous Layers. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6006-6017	6.1	25
262	Direct in Situ Observation and Analysis of the Formation of Palladium Nanocrystals with High-Index Facets. <i>Nano Letters</i> , 2018 , 18, 7004-7013	11.5	30
261	Gravure Coating for Roll-to-Roll Manufacturing of Proton-Exchange-Membrane Fuel Cell Catalyst Layers. <i>Journal of the Electrochemical Society</i> , 2018 , 165, F1012-F1018	3.9	31
260	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. <i>Nature Catalysis</i> , 2018 , 1, 935-945	36.5	691
259	Visible-light-active g-C3N4/N-doped Sr2Nb2O7 heterojunctions as photocatalysts for the hydrogen evolution reaction. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 2507-2515	5.8	34
258	Recent Advances in Catalyst Accelerated Stress Tests for Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2018 , 165, F492-F501	3.9	45
257	Mechanism of Zn Insertion into Nanostructured EMnO2: A Nonaqueous Rechargeable Zn Metal Battery. <i>Chemistry of Materials</i> , 2017 , 29, 4874-4884	9.6	171
256	Enhanced visible light photocatalytic water reduction from a g-C3N4/SrTa2O6 heterojunction. <i>Applied Catalysis B: Environmental</i> , 2017 , 217, 448-458	21.8	50
255	Generating gradient germanium nanostructures by shock-induced amorphization and crystallization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9791-9796	11.5	34
254	3D Analysis of Fuel Cell Electrocatalyst Degradation on Alternate Carbon Supports. <i>ACS Applied Materials & ACS Applied & ACS Appl</i>	9.5	49
253	Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. <i>Science</i> , 2017 , 357, 479-484	33.3	920
252	Bottom up synthesis of boron-doped graphene for stable intermediate temperature fuel cell electrodes. <i>Carbon</i> , 2017 , 123, 605-615	10.4	16
251	Control of Architecture in Rhombic Dodecahedral Pt-Ni Nanoframe Electrocatalysts. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11678-11681	16.4	140
250	Integrating Novel Microscopy into Battery Research: From Atomic Resolution to In Situ and Functional Imaging. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1998-1999	0.5	
249	Electron Tomography of PEM Fuel Cell Catalyst Coarsening on Alternate Carbon Supports. <i>Microscopy and Microanalysis</i> , 2017 , 23, 2090-2091	0.5	

248	A Combined Probe-Molecule, M\(\text{S}\)sbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 16283-16290	3.8	60
247	Nanoscale Engineering of Efficient Oxygen Reduction Electrocatalysts by Tailoring the Local Chemical Environment of Pt Surface Sites. <i>ACS Catalysis</i> , 2017 , 7, 17-24	13.1	37
246	Water-gas shift reaction on alumina-supported Pt-CeO catalysts prepared by supercritical fluid deposition. <i>Journal of Supercritical Fluids</i> , 2017 , 119, 113-121	4.2	12
245	In situ Nanoscale Imaging and Spectroscopy of Energy Storage Materials. <i>Microscopy and Microanalysis</i> , 2017 , 23, 1964-1965	0.5	
244	Overcoming the Challenges of Beam-sensitivity in Fuel Cell Electrodes. <i>Microscopy and Microanalysis</i> , 2017 , 23, 2222-2223	0.5	1
243	One-Step Synthesis of Zeolite Membranes Containing Catalytic Metal Nanoclusters. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 24671-81	9.5	20
242	Durability of Polymer Electrolyte Membrane Fuel Cells Operated at Subfreezing Temperatures. Journal of the Electrochemical Society, 2016 , 163, F1317-F1329	3.9	13
241	Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. <i>Science Advances</i> , 2016 , 2, e1501178	14.3	30
240	A Bidden Mesoscopic Feature Revealed By Electron Microscopy Could Facilitate Ion Transport In Solid Electrolytes. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1308-1309	0.5	
239	Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600053	21.8	33
238	Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. <i>Nano Energy</i> , 2016 , 20, 202-211	17.1	31
237	Quantification of Atomic Arrangements at Heterostructure Interfaces. <i>Microscopy and Microanalysis</i> , 2016 , 22, 1502-1503	0.5	
236	Evolution of Au 25 (SR) 18 Nanoclusters on Ceria Surfaces during in situ Electron Beam Irradiation. Microscopy and Microanalysis, 2016 , 22, 1278-1279	0.5	
235	A Visible-Light-Active Heterojunction with Enhanced Photocatalytic Hydrogen Generation. <i>ChemSusChem</i> , 2016 , 9, 1869-79	8.3	34
234	Carbonaceous Nanowire Supports for Polymer Electrolyte Membrane Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2016 , 163, F115-F121	3.9	
233	Atom Probe Tomography of Interfacial Segregation in CdTe-based Solar Cells. <i>Microscopy and Microanalysis</i> , 2016 , 22, 646-647	0.5	
232	Data Analytics Applied to Chemical Transformations in Liquids. <i>Microscopy and Microanalysis</i> , 2016 , 22, 740-741	0.5	
231	Interfacial Stability of Li Metal-Solid Electrolyte Elucidated via in Situ Electron Microscopy. <i>Nano Letters</i> , 2016 , 16, 7030-7036	11.5	239

230	Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. <i>Nano Letters</i> , 2015 , 15, 2011-8	11.5	157
229	Evidence of High Electrocatalytic Activity of Molybdenum Carbide Supported Platinum Nanorafts. Journal of the Electrochemical Society, 2015, 162, H681-H685	3.9	22
228	Visible light assisted photocatalytic hydrogen generation by Ta2O5/Bi2O3, TaON/Bi2O3, and Ta3N5/Bi2O3 composites. <i>RSC Advances</i> , 2015 , 5, 54998-55005	3.7	40
227	Advanced analytical electron microscopy for lithium-ion batteries. NPG Asia Materials, 2015, 7, e193-e19	3 0.3	60
226	Visible-light-driven Bi2O3/WO3 composites with enhanced photocatalytic activity. <i>RSC Advances</i> , 2015 , 5, 91094-91102	3.7	41
225	Probing battery chemistry with liquid cell electron energy loss spectroscopy. <i>Chemical Communications</i> , 2015 , 51, 16377-80	5.8	23
224	High temperature proton exchange membranes with enhanced proton conductivities at low humidity and high temperature based on polymer blends and block copolymers of poly(1,3-cyclohexadiene) and poly(ethylene glycol). <i>Polymer</i> , 2015 , 77, 208-217	3.9	7
223	Surface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing. <i>Nature Communications</i> , 2015 , 6, 8925	17.4	132
222	Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li(+) /H(+) exchange in aqueous solutions. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 129-33	16.4	86
221	CdSe1_xTex Phase Segregation in CdSe/CdTe Based Solar Cells. <i>Microscopy and Microanalysis</i> , 2015 , 21, 691-692	0.5	2
220	In situ Electrochemical TEM for Quantitative Nanoscale Imaging Dynamics of Solid Electrolyte Interphase and Lithium Electrodeposition. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2437-2438	0.5	2
219	Acid-functionalized mesoporous carbon: an efficient support for ruthenium-catalyzed Evalerolactone production. <i>ChemSusChem</i> , 2015 , 8, 2520-8	8.3	51
218	Effective Strategy for Improving Electrocatalyst Durability by Adhesive Immobilization of Catalyst Nanoparticles on Graphitic Carbon Supports. <i>ACS Catalysis</i> , 2015 , 5, 3662-3674	13.1	11
217	Structural Evolution of Molybdenum Carbides in Hot Aqueous Environments and Impact on Low-Temperature Hydroprocessing of Acetic Acid. <i>Catalysts</i> , 2015 , 5, 406-423	4	12
216	Solid-state graphene formation via a nickel carbide intermediate phase. RSC Advances, 2015, 5, 99037-99) 0 / 13	27
215	Todorokite-type manganese oxide nanowires as an intercalation cathode for Li-ion and Na-ion batteries. <i>RSC Advances</i> , 2015 , 5, 106265-106271	3.7	24
214	Ozonated graphene oxide film as a proton-exchange membrane. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 3588-93	16.4	173
213	Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014, 343, 1339-43	33.3	1989

212	A comparative study of phosphoric acid-doped m-PBI membranes. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2014 , 52, 26-35	2.6	53
211	Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. <i>Chemical Communications</i> , 2014 , 50, 2104-7	5.8	148
210	High-Resolution Mapping of the PFSA Polymer Distribution in PEFC Electrode Layers. <i>ECS Transactions</i> , 2014 , 64, 819-827	1	2
209	Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes. <i>Energy and Environmental Science</i> , 2014 , 7, 1638	35.4	175
208	Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 10398-402	3.6	50
207	Impact of IrRu oxygen evolution reaction catalysts on Pt nanostructured thin films under start-up/shutdown cycling. <i>Journal of Power Sources</i> , 2014 , 269, 671-681	8.9	13
206	Phosphate-Tolerant Oxygen Reduction Catalysts. ACS Catalysis, 2014, 4, 3193-3200	13.1	100
205	Monolithic Composite Electrodes Comprising Silicon Nanoparticles Embedded in Lignin-derived Carbon Fibers for Lithium-Ion Batteries. <i>Energy Technology</i> , 2014 , 2, 773-777	3.5	21
204	Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts. <i>Nano Letters</i> , 2014 , 14, 6361-7	11.5	127
203	Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles. <i>Green Chemistry</i> , 2014 , 16, 3778-3786	10	149
202	Ozonated Graphene Oxide Film as a Proton-Exchange Membrane. <i>Angewandte Chemie</i> , 2014 , 126, 3662	-3,667	9
201	Tuning Electrodeposition Parameters for Tailored Nanoparticle Size, Shape, and Morphology: An In Situ ec-STEM Investigation. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1506-1507	0.5	1
200	In operando Transmission Electron Microscopy Imaging of SEI Formation and Structure in Li-Ion and Li-Metal Batteries. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1538-1539	0.5	
199	Novel Method for Precision Controlled Heating of TEM Thin Sections to Study Reaction Processes. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1628-1629	0.5	1
198	Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. <i>Microscopy and Microanalysis</i> , 2014 , 20, 1029-37	0.5	67
197	Quantitative electrochemical measurements using in situ ec-S/TEM devices. <i>Microscopy and Microanalysis</i> , 2014 , 20, 452-61	0.5	62
196	Imaging and Microanalysis of Thin Ionomer Layers by Scanning Transmission Electron Microscopy. Journal of the Electrochemical Society, 2014 , 161, F1111-F1117	3.9	42
195	Highly Robust Lithium Ion Battery Anodes from Lignin: An Abundant, Renewable, and Low-Cost Material. <i>Advanced Functional Materials</i> , 2014 , 24, 86-94	15.6	173

(2012-2014)

194	Laser Interactions for the Synthesis and In Situ Diagnostics of Nanomaterials. <i>Springer Series in Materials Science</i> , 2014 , 143-173	0.9	2
193	Microstructure and mechanical properties of two-phase Fe30Ni20Mn20Al30. Part I: Microstructure. Journal of Materials Science, 2013, 48, 7435-7445	4.3	4
192	Self-Assembly of Nanostructured, Complex, Multication Films via Spontaneous Phase Separation and Strain-Driven Ordering. <i>Advanced Functional Materials</i> , 2013 , 23, 1912-1918	15.6	45
191	Microstructure and mechanical behavior of directionally solidified Fe35Ni15Mn25Al25. <i>Intermetallics</i> , 2013 , 32, 413-422	3.5	4
190	Ternary electrocatalysts for oxidizing ethanol to carbon dioxide: making ir capable of splitting C-C bond. <i>Journal of the American Chemical Society</i> , 2013 , 135, 132-41	16.4	149
189	Synthesis of platinum single-crystal nanoparticles in water vapor. <i>Journal of Materials Science</i> , 2013 , 48, 3834-3840	4.3	3
188	A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. <i>Chemical Communications</i> , 2013 , 49, 3291-3	5.8	185
187	Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts. <i>Energy and Environmental Science</i> , 2013 , 6, 2957	35.4	85
186	High-temperature transformation of Fe-decorated single-wall carbon nanohorns to nanooysters: a combined experimental and theoretical study. <i>Nanoscale</i> , 2013 , 5, 1849-57	7.7	10
185	Laser-assisted solid-state synthesis of carbon nanotube/silicon core/shell structures. <i>Nanotechnology</i> , 2013 , 24, 255604	3.4	3
184	Magnetic alignment of SWCNTs decorated with Fe3O4 to enhance mechanical properties of SC-15 epoxy. <i>AIP Advances</i> , 2013 , 3, 042104	1.5	17
183	CO oxidation studies over cluster-derived Au/TiO2 and AUROlitelAu/TiO2 catalysts using DRIFTS. <i>Catalysis Today</i> , 2013 , 208, 72-81	5.3	31
182	Oxygen Electroreduction on Nanoscale Pt/[TaOPO4/VC] and Pt/[Ta2O5/VC] in Alkaline Electrolyte. <i>ECS Electrochemistry Letters</i> , 2013 , 2, H46-H50		6
181	Composition Dependence of the Pore Structure and Water Transport of Composite Catalyst Layers for Polymer Electrolyte Fuel Cells. <i>Journal of the Electrochemical Society</i> , 2013 , 160, F1000-F1005	3.9	22
180	PEM Fuel Cell Catalyst Layer Structure Degradation during Carbon Corrosion. <i>ECS Transactions</i> , 2013 , 58, 945-952	1	4
179	Accelerated Testing of Carbon Corrosion and Membrane Degradation in PEM Fuel Cells. <i>ECS Transactions</i> , 2013 , 50, 1003-1010	1	19
178	Effect of polymerBanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites. <i>Polymer</i> , 2012 , 53, 595-603	3.9	45
177	Colloidal synthesis of BaF2 nanoparticles and their application as fillers in polymer nanocomposites. <i>Applied Physics A: Materials Science and Processing</i> , 2012 , 106, 661-667	2.6	9

176	Selection of Single-Walled Carbon Nanotube with Narrow Diameter Distribution by Using a PPE-PPV Copolymer <i>ACS Macro Letters</i> , 2012 , 1, 246-251	6.6	27
175	Achieving Diameter-Selective Separation of Single-Walled Carbon Nanotubes by Using Polymer Conformation-Confined Helical Cavity. <i>ACS Macro Letters</i> , 2012 , 1, 701-705	6.6	19
174	Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	5
173	A narrow biasing window for high density diamond nucleation on Ir/YSZ/Si(100) using microwave plasma chemical vapor deposition. <i>Diamond and Related Materials</i> , 2012 , 23, 28-33	3.5	13
172	Understanding Oxygen Reduction on Tantalum Oxyphosphate and Tantalum Oxide Supported Platinum by X-ray Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18175-18183	3.8	19
171	Oxide growth stress measurements and relaxation mechanisms for alumina scales grown on FeCrAlY. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2012 , 63, 857-861	1.6	4
170	A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation. <i>Nano Letters</i> , 2012 , 12, 1102-6	11.5	208
169	Non-congruence of thermally driven structural and electronic transitions in VO2. <i>Journal of Applied Physics</i> , 2012 , 112, 103532	2.5	37
168	Rational Development of Ternary Alloy Electrocatalysts. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 1668-73	6.4	116
167	Novel Pulse Electrodeposited Cotunno Nanowire/tube Catalysts for C1tt4 Alcohols and C2tt6 (Except C5) Hydrocarbons from CO and H2. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10924-10933	3.8	10
166	Fuel Cells Catalyst for Start-Up and Shutdown Conditions: Electrochemical, XPS, and STEM Evaluation of Sputter-Deposited Ru, Ir, and Ti on Pt-Coated Nanostructured Thin Film Supports. <i>Electrocatalysis</i> , 2012 , 3, 284-297	2.7	25
165	Incremental growth of short SWNT arrays by pulsed chemical vapor deposition. <i>Small</i> , 2012 , 8, 1534-42	11	7
164	Comparison of Short-Term Oxidation Behavior of Model and Commercial Chromia-Forming Ferritic Stainless Steels in Dry and Wet Air. <i>Oxidation of Metals</i> , 2012 , 78, 1-16	1.6	10
163	The Thermal Expansion, Elastic and Fracture Properties of Porous Cordierite at Elevated Temperatures. <i>Journal of the American Ceramic Society</i> , 2012 , 95, 1682-1691	3.8	45
162	Epoxy nanodielectrics fabricated with in situ and ex situ techniques. <i>Journal of Experimental Nanoscience</i> , 2012 , 7, 274-281	1.9	12
161	Investigation of a Silicotungstic Acid Functionalized Carbon on Pt Activity and Durability for the Oxygen Reduction Reaction. <i>Journal of the Electrochemical Society</i> , 2012 , 159, F871-F879	3.9	4
160	Graphene-Riched Co9S8-N-C Non-Precious Metal Catalyst for Oxygen Reduction in Alkaline Media. <i>ECS Transactions</i> , 2011 , 41, 1709-1717	1	74
159	Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. <i>Nano Letters</i> , 2011 , 11, 919-26	11.5	400

(2010-2011)

158	Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays. <i>ACS Nano</i> , 2011 , 5, 8311-21	16.7	31
157	Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14396-403	16.4	489
156	Synthesis of Homogeneous Pt-Bimetallic Nanoparticles as Highly Efficient Electrocatalysts. <i>ACS Catalysis</i> , 2011 , 1, 1355-1359	13.1	111
155	Composition-Controlled Synthesis of Bimetallic PdPt Nanoparticles and Their Electro-oxidation of Methanol. <i>Chemistry of Materials</i> , 2011 , 23, 4199-4203	9.6	210
154	Wet oxidation of stainless steels: New insights into hydrogen ingress. Corrosion Science, 2011, 53, 1633-	-16638	21
153	SynthesisEtructureperformance correlation for polyanilineMeII non-precious metal cathode catalysts for oxygen reduction in fuel cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11392		480
152	High Surface Area Molybdenum Nitride Support for Fuel Cell Electrodes. <i>Journal of the Electrochemical Society</i> , 2011 , 158, B1255	3.9	19
151	High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. <i>Science</i> , 2011 , 332, 443-7	33.3	3271
150	Properties of ultrafast laser textured silicon for photovoltaics. <i>Solar Energy Materials and Solar Cells</i> , 2011 , 95, 2745-2751	6.4	47
149	Au on Nanosized NiO: A Cooperative Effect between Au and Nanosized NiO in the Base-Free Alcohol Oxidation. <i>ChemCatChem</i> , 2011 , 3, 1612-1618	5.2	52
148	Physical properties of epoxy resin/titanium dioxide nanocomposites. <i>Polymer Engineering and Science</i> , 2011 , 51, 87-93	2.3	41
147	Antioxidant deactivation on graphenic nanocarbon surfaces. Small, 2011, 7, 2775-85	11	116
146	Single walled carbon nanohorns as photothermal cancer agents. <i>Lasers in Surgery and Medicine</i> , 2011 , 43, 43-51	3.6	62
145	Correlation Between Surface Chemistry and Electrocatalytic Properties of Monodisperse PtxNi1-x Nanoparticles. <i>Advanced Functional Materials</i> , 2011 , 21, 147-152	15.6	204
144	Preparation and Characterization of PdFe Nanoleaves as Electrocatalysts for Oxygen Reduction Reaction. <i>Chemistry of Materials</i> , 2011 , 23, 1570-1577	9.6	94
143	Characterization of Durable Nanostructured Thin Film Catalysts Tested under Transient Conditions Using Analytical Aberration-Corrected Electron Microscopy. <i>ECS Transactions</i> , 2011 , 41, 1099-1103	1	4
142	Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide. <i>Applied Physics Letters</i> , 2011 , 98, 251916	3.4	39
141	Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. <i>Nature Chemistry</i> , 2010 , 2, 454-60	17.6	2116

140	ELECTRICAL AND MECHANICAL PROPERTIES OF TITANIUM DIOXIDE NANOPARTICLE FILLED EPOXY RESIN COMPOSITES 2010 ,		6
139	Comparison of Three Microturbine Primary Surface Recuperator Alloys. <i>Journal of Engineering for Gas Turbines and Power</i> , 2010 , 132,	1.7	5
138	Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7848-9	16.4	350
137	Pulsed growth of vertically aligned nanotube arrays with variable density. ACS Nano, 2010, 4, 7573-81	16.7	35
136	Properties of a nanodielectric cryogenic resin. <i>Applied Physics Letters</i> , 2010 , 96, 152903	3.4	26
135	High-Activity, Durable Oxygen Reduction Electrocatalyst: Nanoscale Composite of PlatinumIIantalum Oxyphosphate on Vulcan Carbon. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1977	-1 9 81	29
134	In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. <i>Nano Letters</i> , 2010 , 10, 2843-8	11.5	49
133	Pre-oxidized and nitrided stainless steel alloy foil for proton exchange membrane fuel cell bipolar plates: Part 1. Corrosion, interfacial contact resistance, and surface structure. <i>Journal of Power Sources</i> , 2010 , 195, 5610-5618	8.9	34
132	A Facile High-speed Vibration Milling Method to Water-disperse Single-walled Carbon Nanohorns. <i>Chemistry of Materials</i> , 2010 , 22, 347-351	9.6	19
131	Transmission Electron Microscopy Observation of Corrosion Behaviors of Platinized Carbon Blacks under Thermal and Electrochemical Conditions. <i>Journal of the Electrochemical Society</i> , 2010 , 157, B906	3.9	75
130	Breakdown properties of epoxy nanodielectric 2010 ,		2
129	Investigation of Transport Properties, Microstructure, and Thermal Behavior of PEFC Catalyst Layers. <i>ECS Transactions</i> , 2010 , 33, 1207-1215	1	6
128	Syntheses, characterization, and catalytic oxygen electroreduction activities of carbon-supported PtW nanoparticle catalysts. <i>Journal of Power Sources</i> , 2010 , 195, 2570-2578	8.9	18
127	Microstructural stability of copper with antimony dopants at grain boundaries: experiments and molecular dynamics simulations. <i>Journal of Materials Science</i> , 2010 , 45, 6707-6718	4.3	25
126	Sulfidation Dxidation Behavior of FeCrAl and TiCrAl and the Third-Element Effect. <i>Oxidation of Metals</i> , 2010 , 74, 1-9	1.6	8
125	Synthesis and Characterization of Multimetallic Pd/Au and Pd/Au/FePt Core/Shell Nanoparticles. <i>Angewandte Chemie</i> , 2010 , 122, 9558-9562	3.6	19
124	Synthesis and characterization of multimetallic Pd/Au and Pd/Au/FePt core/shell nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9368-72	16.4	152
123	Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. <i>Electrochimica Acta</i> , 2010 , 55, 2645-2652	6.7	219

(2008-2010)

122	Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies. <i>Electrochimica Acta</i> , 2010 , 55, 7404-7412	6.7	79
121	Functionally graded hydroxyapatite coatings doped with antibacterial components. <i>Acta Biomaterialia</i> , 2010 , 6, 2264-73	10.8	124
120	Low-angle grain boundaries in YBa2Cu3O7D with high critical current densities. <i>Physical Review B</i> , 2009 , 79,	3.3	30
119	Long-Term Microturbine Exposure of an Advanced Alloy for Microturbine Primary Surface Recuperators. <i>Journal of Engineering for Gas Turbines and Power</i> , 2009 , 131,	1.7	2
118	Microstructural and Mechanical Characterization of a Hybrid Oxide CMC Combustor Liner After 25,000-Hour Engine Test 2009 ,		4
117	A three-dimensional, biaxially textured oxide nanofence composed of MgO single crystal nanobelt segments. <i>Nanotechnology</i> , 2009 , 20, 215608	3.4	3
116	Characterization of alumina interfaces in TBC systems. <i>Journal of Materials Science</i> , 2009 , 44, 1676-1686	54.3	53
115	Highly Stable and Active Pttu Oxygen Reduction Electrocatalysts Based on Mesoporous Graphitic Carbon Supports. <i>Chemistry of Materials</i> , 2009 , 21, 4515-4526	9.6	99
114	Nanodielectrics for Cryogenic Applications. <i>IEEE Transactions on Applied Superconductivity</i> , 2009 , 19, 2354-2358	1.8	9
113	Electrical properties of a polymeric nanocomposite with in-situ synthesized nanoparticles 2009,		2
112	Microstructure and Mechanical Behavior in Spinodal Fe35Ni15Mn25Al25 Alloy. <i>Microscopy and Microanalysis</i> , 2009 , 15, 116-117	0.5	5
111	Cryo-SEM of Hydrated High Temperature Proton Exchange Membranes. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1420-1421	0.5	
110	XPS Analysis of Fuel Cell Membrane Prepared Using an Ultra-Low-Angle-Microtomy Technique. <i>Microscopy and Microanalysis</i> , 2009 , 15, 1130-1131	0.5	
109	Applications of High-Resolution Aberration-Corrected STEM Imaging to Studies of the Behavior of Nanophase Materials at Elevated Temperatures. <i>Microscopy and Microanalysis</i> , 2009 , 15, 130-131	0.5	17
108	Pt-Co Bimetallic Catalysts for PEM Fuel Cell Cathodes. <i>Microscopy and Microanalysis</i> , 2009 , 15, 146-147	0.5	2
107	Alkylamine Stabilized Ruthenium Nanocrystals: Faceting and Branching. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 12122-12126	3.8	24
106	Self-assembly of perylenediimide and naphthalenediimide nanostructures on glass substrates through deposition from the gas phase. <i>Journal of the American Chemical Society</i> , 2008 , 130, 10056-7	16.4	49
105	Comparison of Recuperator Alloy Degradation in Laboratory and Engine Testing. <i>Journal of Engineering for Gas Turbines and Power</i> , 2008 , 130,	1.7	4

Design strategies for oxidation-resistant intermetallic and advanced metallic alloys **2008**, 3-18

103	25,000-Hour Hybrid Oxide CMC Field Test Summary 2008 ,		3
102	Long-Term Microturbine Exposure of an Advanced Alloy for Microturbine Primary Surface Recuperators 2008 ,		3
101	Transformation of Al2O3 to LiAlO2 in Pba7Li at 800°C. Journal of Nuclear Materials, 2008, 376, 108-113	3.3	26
100	Fabrication of epitaxial EAl2O3 and spinel NiAl2O4 films on SrTiO3 by pulsed laser ablation. Journal of Crystal Growth, 2008 , 311, 210-213	1.6	6
99	Preparation and characterization of carbon-supported PtTi alloy electrocatalysts. <i>Journal of Power Sources</i> , 2008 , 175, 794-799	8.9	50
98	Electrical properties of epoxy resin based nano-composites. <i>Nanotechnology</i> , 2007 , 18, 025703	3.4	113
97	Enhancement of dielectric strength in nanocomposites. <i>Nanotechnology</i> , 2007 , 18, 325704	3.4	77
96	Advanced alloys for compact, high-efficiency, high-temperature heat-exchangers. <i>International Journal of Hydrogen Energy</i> , 2007 , 32, 3622-3630	6.7	25
95	Protective nitride formation on stainless steel alloys for proton exchange membrane fuel cell bipolar plates. <i>Journal of Power Sources</i> , 2007 , 174, 228-236	8.9	42
94	Creep Strength and Microstructure of AL20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recuperators. <i>Journal of Engineering for Gas Turbines and Power</i> , 2007 , 129, 798-805	1.7	4
93	Creep-resistant, Al2O3-forming austenitic stainless steels. <i>Science</i> , 2007 , 316, 433-6	33.3	260
92	Accelerated Oxidation of Type 347 Stainless Steel Primary Surface Recuperators Operating Above 600°C 2007 , 821		3
91	Scientific aspects of polymer electrolyte fuel cell durability and degradation. <i>Chemical Reviews</i> , 2007 , 107, 3904-51	68.1	2627
90	The formation of protective nitride surfaces for PEM fuel cell metallic bipolar plates. <i>Jom</i> , 2006 , 58, 50-	·5 7 .1	50
89	Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat Exchangers. <i>Journal of Turbomachinery</i> , 2006 , 128, 814-819	1.8	8
88	Identifying Contributing Degradation Phenomena in PEM Fuel Cell Membrane Electride Assemblies Via Electron Microscopy. <i>ECS Transactions</i> , 2006 , 3, 717-733	1	80
87	PEM Fuel Cell Durability With Transportation Transient Operation. <i>ECS Transactions</i> , 2006 , 3, 879-886	1	36

(2004-2006)

86	Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2006 , 417, 322-333	5.3	70
85	The effect of water vapor on the oxidation behavior of NiPtAl coatings and alloys. <i>Surface and Coatings Technology</i> , 2006 , 201, 3852-3856	4.4	47
84	The High-Temperature Stability of an Oxide/Oxide Composite at High Water-Vapor Pressure 2005 , 369		2
83	Transmission Electron Microscopy of Boundary-Lubricated Bearing Surfaces. Part II: Mineral Oil Lubricant with Sulfur-and Phosphorus-Containing Gear Oil Additives. <i>Tribology Transactions</i> , 2005 , 48, 299-307	1.8	30
82	Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1011	3.9	292
81	Overview of Creep Strength and Oxidation of Heat-Resistant Alloy Sheets and Foils for Compact Heat-Exchangers 2005 , 1011		5
80	The Evaluation of CFCC Liners After Field Testing in a Gas Turbine: V 2005, 351		
79	High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors. <i>Journal of the American Ceramic Society</i> , 2005 , 80, 1421-1435	3.8	184
78	Multilayered Oxide Interphase Concept for Ceramic-Matrix Composites. <i>Journal of the American Ceramic Society</i> , 2005 , 81, 717-720	3.8	30
77	Feasibility assessment of self-grading metallic bond coat alloys for EBCs/TBCs to protect Si-Based ceramics. <i>Scripta Materialia</i> , 2005 , 52, 393-397	5.6	5
76	Coating and near-surface modification design strategies for protective and functional surfaces. <i>Materials and Corrosion - Werkstoffe Und Korrosion</i> , 2005 , 56, 748-755	1.6	12
75	Use of Very High Water-Vapor Pressures to Evaluate Candidate Compositions for Environmental Barrier Coatings 2005 , 363		1
74	Radial distribution function analyses of amorphous carbon thin films containing various levels of silicon and hydrogen. <i>Journal of Applied Physics</i> , 2004 , 96, 273-279	2.5	7
73	Porosimetry of MEAs Made by IIhin Film DecallMethod and Its Effect on Performance of PEFCs. Journal of the Electrochemical Society, 2004 , 151, A1841	3.9	105
72	Austenitic Stainless Steels and Alloys With Improved High-Temperature Performance for Advanced Microturbine Recuperators 2004 , 131		7
71	TEM Evaluation of Aged Proton Exchange Membrane Fuel Cells. <i>Microscopy and Microanalysis</i> , 2004 , 10, 1368-1369	0.5	1
7º	Microstructure and Mechanical Properties of Heat-Treated Silicon Carbide Aluminum Nitride Solid Solutions. <i>Journal of the American Ceramic Society</i> , 2004 , 85, 933-940	3.8	4
69	Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates. <i>Scripta Materialia</i> , 2004 , 50, 1017-1022	5.6	152

68	Liquid reagent CVD of carbon. I. Processing and microstructure. <i>Carbon</i> , 2004 , 42, 1895-1900	10.4	2
67	Thermally nitrided stainless steels for polymer electrolyte membrane fuel cell bipolar plates. <i>Journal of Power Sources</i> , 2004 , 138, 79-85	8.9	109
66	Microstructure of carbon fibers prepared laser CVD. Carbon, 2004, 42, 2721-2727	10.4	4
65	Transmission Electron Microscopy of Boundary-Lubricated Bearing Surfaces. Part I: Mineral Oil Lubricant. <i>Tribology Transactions</i> , 2004 , 47, 430-439	1.8	21
64	TEM Specimen Preparation of Thin Interfacial Coatings on Continuous Ceramic Fibers Using the Focused Ion Beam (FIB) Technique. <i>Microscopy and Microanalysis</i> , 2004 , 10, 1160-1161	0.5	
63	Evaluating the Stability of BSAS-Based EBCs in High Water-Vapor Pressure Environments 2004 , 377		5
62	Stainless Steels With Improved Oxidation Resistance for Recuperators 2004,		4
61	The Evaluation of CFCC Liners After Field Testing in a Gas Turbine 🛭 V 2003, 657		4
60	Selection, Development and Testing of Stainless Steels and Alloys for High-Temperature Recuperator Applications 2003 , 763		9
59	Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl. <i>Oxidation of Metals</i> , 2003 , 59, 257-283	1.6	93
58	Effects of High Water-Vapor Pressure on Oxidation of Silicon Carbide at 1200˚LC. <i>Journal of the American Ceramic Society</i> , 2003 , 86, 1249-1255	3.8	76
57	High-Temperature Stability of SiC-Based Composites in High-Water-Vapor-Pressure Environments. Journal of the American Ceramic Society, 2003 , 86, 1272-1281	3.8	52
56	Growth stress Imicrostructure relationships for alumina scales. <i>Materials at High Temperatures</i> , 2003 , 20, 303-309	1.1	30
55	Uniform texture in meter-long YBa2Cu3O7 tape. <i>Physica C: Superconductivity and Its Applications</i> , 2002 , 382, 342-348	1.3	16
54	Evaluation of CFCC liners with EBC after field testing in a gas turbine. <i>Journal of the European Ceramic Society</i> , 2002 , 22, 2769-2775	6	94
53	The effects of structure, composition, and chemical bonding on the mechanical properties of Si-aC:H thin films. <i>Surface and Coatings Technology</i> , 2002 , 157, 197-206	4.4	19
52	Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings. <i>Oxidation of Metals</i> , 2002 , 58, 513-544	1.6	158
51	The Effect of Water Vapor on Oxidation Performance of Alloys Used in Recuperators 2002 , 1045		10

50	Evaluating Environmental Barrier Coatings on Ceramic Matrix Composites After Engine and Laboratory Exposures 2002 , 155		15
49	Oxidation Behavior of Prospective Silicon Nitride Materials for Advanced Microturbine Applications 2001 ,		6
48	As-deposited mixed zone in thermally grown oxide beneath a thermal barrier coating. <i>Surface and Coatings Technology</i> , 2001 , 146-147, 152-161	4.4	59
47	Materials Selection for High Temperature (750🖽000˚C) Metallic Recuperators for Improved Efficiency Microturbines 2001 ,		10
46	Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments. <i>Journal of Engineering for Gas Turbines and Power</i> , 2000 , 122, 212-218	1.7	20
45	EBC Protection of SiC/SiC Composites in the Gas Turbine Combustion Environment 2000,		9
44	Observations of Accelerated Silicon Carbide Recession by Oxidation at High Water-Vapor Pressures. <i>Journal of the American Ceramic Society</i> , 2000 , 83, 211-13	3.8	125
43	Ceramic Composites with Multilayer Interface Coatings. <i>Journal of the American Ceramic Society</i> , 2000 , 83, 3014-3020	3.8	21
42	Characterization of thermally cycled alumina scales. <i>Materials at High Temperatures</i> , 2000 , 17, 165-171	1.1	25
41	Evaluating the effect of oxygen content in BN interfacial coatings on the stability of SiC/BN/SiC composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 1999 , 30, 463-470	8.4	26
40	Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments 1999 ,		12
39	Chemical Vapor Deposition of B13C2 from BCl3-CH4-H2-Argon Mixtures. <i>Journal of the American Ceramic Society</i> , 1998 , 81, 3077-3086	3.8	16
38	Low dose irradiation performance of SiC interphase SiC/SiC composites. <i>Journal of Nuclear Materials</i> , 1998 , 253, 20-30	3.3	67
37	Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. <i>Applied Catalysis B:</i> Environmental, 1998 , 16, 105-117	21.8	409
36	Laminated C-SiC Matrix Composites Produced by CVI. <i>Journal of the American Ceramic Society</i> , 1997 , 80, 113-116	3.8	19
35	Characterization of fiber/matrix interfaces in composites with a boron nitride matrix. <i>Composites Science and Technology</i> , 1996 , 56, 967-975	8.6	24
34	Characterization of Si3N4 Coated with Chemically-Vapor-Deposited Mullite after Na2SO4-Induced Corrosion. <i>Journal of the American Ceramic Society</i> , 1996 , 79, 2489-2492	3.8	22
33	Matrix characterization of fibre-reinforced SiC matrix composites fabricated by chemical vapour infiltration. <i>Journal of Materials Science</i> , 1995 , 30, 4279-4285	4.3	15

32	Evolution of Stress Failure Resulting from High-Temperature Stress-Corrosion Cracking in a Hot Isostatically Pressed Silicon Nitride. <i>Journal of the American Ceramic Society</i> , 1995 , 78, 2129-2140	3.8	20
31	Crystal orientation and near-interface structure of chemically vapor deposited MoS2 films. <i>Journal of Materials Research</i> , 1995 , 10, 49-53	2.5	15
30	Effects of radiation on SiC-based Nicalon fibers. <i>Journal of Materials Research</i> , 1995 , 10, 736-747	2.5	39
29	Synthesis of functionally graded metal-ceramic microstructures by chemical vapor deposition. <i>Journal of Materials Research</i> , 1995 , 10, 3000-3002	2.5	8
28	Powder synthesis, sintering, and characterization of Ba1+xZr6\(\mathbb{Z}\)xSi2xO24 -A low thermal expansion system. <i>Scripta Metallurgica Et Materialia</i> , 1995 , 32, 1967-1972		2
27	Creep and Stress Rupture Behavior of an Advanced Silicon Nitride: Part I, Experimental Observations. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 1217-1227	3.8	69
26	Creep and Creep Rupture of an Advanced Silicon Nitride Ceramic. <i>Journal of the American Ceramic Society</i> , 1994 , 77, 867-874	3.8	43
25	Phase evolution in boron nitride thin films. <i>Journal of Materials Research</i> , 1993 , 8, 1213-1216	2.5	183
24	Epitaxical nucleation of polycrystalline silicon carbide during chemical vapor deposition. <i>Journal of Materials Research</i> , 1993 , 8, 1086-1092	2.5	8
23	Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part II. Textured microstructure development. <i>Journal of Materials Research</i> , 1993 , 8, 2191-2202	2.5	12
22	Kinetics and mechanisms of high-temperature creep in polycrystalline aluminum nitride. <i>Journal of Materials Research</i> , 1993 , 8, 1101-1108	2.5	6
21	Layer-by-layer epitaxial growth of GaN at low temperatures. <i>Thin Solid Films</i> , 1993 , 225, 244-249	2.2	29
20	High-Resolution Electron Microscopy of Silicon Carbide-Whisker-Reinforced Alumina Composite Interfaces in Specimens Subjected to Elevated Temperatures. <i>Journal of the American Ceramic Society</i> , 1993 , 76, 2397-2400	3.8	4
19	Composition/structure/property relations of multi-ion-beam reactive sputtered lead lanthanum titanate thin films: Part I. Composition and structure analysis. <i>Journal of Materials Research</i> , 1992 , 7, 3	30 5-5 05	55 ⁴⁰
18	Structural-property relationships in dielectrophoretically assembled BaTiO3 nanocomposites. <i>Materials Letters</i> , 1992 , 15, 26-30	3.3	18
17	Microstructural characterization of a creep-deformed SiC whisker-reinforced Si3N4. <i>Ultramicroscopy</i> , 1991 , 37, 263-278	3.1	6
16	Composition and Microstructure of Chemically Vapor-Deposited Boron Nitride, Aluminum Nitride, and Boron Nitride + Aluminum Nitride Composites. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 301-305	3.8	19
15	Interaction of Chemically Vapor Deposited YBa2Cu3Ox with Yttria-Stabilized Zirconia Substrates. <i>Journal of the American Ceramic Society</i> , 1991 , 74, 2021-2024	3.8	6

LIST OF PUBLICATIONS

14	Deformation and microstructural changes in SiC whisker-reinforced Si3N4 composites. <i>Journal of Materials Research</i> , 1991 , 6, 2735-2746	2.5	8
13	Electron Microscopy of Defects in Epitaxical EsiC Thin Films Grown on Silicon and Carbon {0001} Faces of EsiC Substrates. <i>Journal of the American Ceramic Society</i> , 1990 , 73, 1283-1288	3.8	7
12	Effect of Substrate Orientation on Interfacial and Bulk Character of Chemically Vapor Deposited Monocrystalline Silicon Carbide Thin Films. <i>Journal of the American Ceramic Society</i> , 1990 , 73, 1289-1296	53.8	6
11	Electron microscopy of the growth features and crystal structures of filament assisted CVD diamond films. <i>Surface and Coatings Technology</i> , 1989 , 39-40, 199-210	4.4	46
10	Ion beam deposition of BiC layers onto BiC substrates. <i>Vacuum</i> , 1989 , 39, 1065-1068	3.7	13
9	An examination of double positioning boundaries and interface misfit in beta-SiC films on alpha-SiC substrates. <i>Journal of Applied Physics</i> , 1988 , 63, 2645-2650	2.5	88
8	Ion implantation in EsiC: Effect of channeling direction and critical energy for amorphization. <i>Journal of Materials Research</i> , 1988 , 3, 321-328	2.5	51
7	MICROSTRUCTURAL CHARACTERIZATION OF UDIMET 720 : A NICKEL-BASE ALLOY. <i>Journal De Physique Colloque</i> , 1988 , 49, C6-391-C6-396		4
6	Occurrence and Distribution of Boron-Conitaining Phases in Sintered Esilicon Carbide. <i>Journal of the American Ceramic Society</i> , 1986 , 69, 695-698	3.8	27
5	Application of Electrochemical Liquid Cells for Electrical Energy Storage and Conversion Studies237-257	7	1
4	The use of two reactive elements to optimize oxidation performance of alumina-forming alloys		13
3	Microstructural evaluation of dross formation on Mg- and non-Mg-containing Al alloys from industrial furnaces		4
2	Microstructural Characterization of Silicon Nitride Ceramics Processed by Pressureless Sintering, Overpressure Sintering, and Sinter HIP. <i>Ceramic Engineering and Science Proceedings</i> ,603-615	0.1	4
1	Improved Fiber Coatings for Nicalon□ /SiC Composites375-384		12