VÃ-ctor CerdÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10722068/publications.pdf

Version: 2024-02-01

93 papers 3,758 citations

94381 37 h-index 138417 58 g-index

94 all docs 94 docs citations 94 times ranked 2975 citing authors

#	Article	IF	CITATIONS
1	Flow-based determination of lead exploiting in-syringe dispersive liquid-liquid micro-extraction in xylene and integrated spectrophotometric detection. Talanta, 2022, 247, 123528.	2.9	6
2	Automated method for volatile fatty acids determination in anaerobic processes using in-syringe magnetic stirring assisted dispersive liquid-liquid microextraction and gas chromatography with flame ionization detector. Journal of Chromatography A, 2021, 1643, 462034.	1.8	7
3	Determination of long-chain fatty acids in anaerobic digester supernatant and olive mill wastewater exploiting an in-syringe dispersive liquid-liquid microextraction and derivatization-free GC-MS method. Analytical and Bioanalytical Chemistry, 2021, 413, 3833-3845.	1.9	9
4	Continuous-Flow Extraction. , 2020, , 745-781.		1
5	Fully automatic system for lead monitoring in water. Microchemical Journal, 2020, 154, 104550.	2.3	4
6	Design of an automatic spectrophotometric system. Talanta, 2020, 218, 121163.	2.9	5
7	Automation of radiochemical analysis by flow techniques – A review. TrAC - Trends in Analytical Chemistry, 2019, 118, 352-367.	5.8	15
8	Immobilization of Metal–Organic Frameworks on Supports for Sample Preparation and Chromatographic Separation. Chromatographia, 2019, 82, 361-375.	0.7	33
9	3D printed device for the automated preconcentration and determination of chromium (VI). Talanta, 2018, 184, 15-22.	2.9	47
10	Hyphenation of flow analysis with spectrometric techniques. Applied Spectroscopy Reviews, 2018, 53, 854-876.	3 . 4	3
11	Automated solidâ€phase extraction of phenolic acids using layered double hydroxide–alumina–polymer disks. Journal of Separation Science, 2018, 41, 2012-2019.	1.3	17
12	Emerging materials for sample preparation. Journal of Separation Science, 2018, 41, 262-287.	1.3	33
13	Determination of herbicides in environmental water samples by simultaneous inâ€syringe magnetic stirringâ€assisted dispersive liquid–liquid microextraction and silylation followed by GC–MS. Journal of Separation Science, 2018, 41, 1096-1103.	1.3	25
14	Multisyringe flow injection analysis in spectroanalytical techniques – A review. TrAC - Trends in Analytical Chemistry, 2018, 98, 1-18.	5. 8	19
15	Recent advances in flow-based automated solid-phase extraction. TrAC - Trends in Analytical Chemistry, 2018, 108, 370-380.	5 . 8	53
16	Nanoparticle-templated hierarchically porous polymer/zeolitic imidazolate framework as a solid-phase microextraction coatings. Journal of Chromatography A, 2018, 1567, 55-63.	1.8	28
17	Automated dispersive liquid-liquid microextraction based on the solidification of the organic phase. Talanta, 2018, 189, 241-248.	2.9	38
18	In-syringe dispersive $\hat{1}\frac{1}{4}$ -SPE of estrogens using magnetic carbon microparticles obtained from zeolitic imidazolate frameworks. Analytical and Bioanalytical Chemistry, 2017, 409, 225-234.	1.9	30

#	Article	IF	CITATIONS
19	Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC - Trends in Analytical Chemistry, 2017, 90, 142-152.	5.8	249
20	Automated multisyringe stir bar sorptive extraction using robust montmorillonite/epoxy-coated stir bars. Journal of Chromatography A, 2016, 1445, 10-18.	1.8	23
21	Automatic flow kinetic-catalytic methods. TrAC - Trends in Analytical Chemistry, 2016, 85, 33-45.	5.8	8
22	Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages. Food Chemistry, 2016, 212, 759-767.	4.2	41
23	Submicrometric Magnetic Nanoporous Carbons Derived from Metal–Organic Frameworks Enabling Automated Electromagnet-Assisted Online Solid-Phase Extraction. Analytical Chemistry, 2016, 88, 6990-6995.	3.2	43
24	Solid-phase extraction of organic compounds: A critical review (Part I). TrAC - Trends in Analytical Chemistry, 2016, 80, 641-654.	5.8	345
25	Strategies for automating solid-phase extraction and liquid-liquid extraction in radiochemical analysis. TrAC - Trends in Analytical Chemistry, 2016, 76, 145-152.	5.8	50
26	On-line in-syringe magnetic stirring assisted dispersive liquid–liquid microextraction HPLC – UV method for UV filters determination using 1-hexyl-3-methylimidazolium hexafluorophosphate as extractant. Talanta, 2016, 148, 589-595.	2.9	44
27	In-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction and silylation prior gas chromatography–mass spectrometry for ultraviolet filters determination in environmental water samples. Journal of Chromatography A, 2016, 1443, 26-34.	1.8	37
28	Solid-phase extraction of organic compounds: A critical review. part ii. TrAC - Trends in Analytical Chemistry, 2016, 80, 655-667.	5.8	231
29	On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony. Talanta, 2016, 148, 694-699.	2.9	38
30	Analytical strategies for coupling separation and flow-injection techniques. TrAC - Trends in Analytical Chemistry, 2015, 67, 26-33.	5.8	41
31	Determination of priority phenolic pollutants exploiting an in-syringe dispersive liquid–liquid microextraction–multisyringe chromatography system. Analytical and Bioanalytical Chemistry, 2015, 407, 2013-2022.	1.9	32
32	Automatic in-syringe dispersive liquid–liquid microextraction of 99Tc from biological samples and hospital residues prior to liquid scintillation counting. Analytical and Bioanalytical Chemistry, 2015, 407, 5571-5578.	1.9	21
33	Automatic In-Syringe Dispersive Microsolid Phase Extraction Using Magnetic Metal–Organic Frameworks. Analytical Chemistry, 2015, 87, 7545-7549.	3.2	75
34	Spectrophotometric determination of bromide in water using the multisyringe flow injection analysis technique coupled to a gas-diffusion unit. Analytical Methods, 2015, 7, 4202-4208.	1.3	14
35	Zeolitic imidazolate framework dispersions for the fast and highly efficient extraction of organic micropollutants. RSC Advances, 2015, 5, 28203-28210.	1.7	34
36	Estrogens determination in wastewater samples by automatic in-syringe dispersive liquid–liquid microextraction prior silylation and gas chromatography. Journal of Chromatography A, 2015, 1413, 1-8.	1.8	41

#	Article	IF	CITATIONS
37	Uranium monitoring tool for rapid analysis of environmental samples based on automated liquid-liquid microextraction. Talanta, 2015, 134, 674-680.	2.9	22
38	Online Analytical Determination Modes. , 2014, , 43-64.		0
39	Automating Radiochemical Analysis. , 2014, , 247-264.		0
40	Online Separation and Preconcentration Methods., 2014,, 65-102.		1
41	Online coupling lab on valve-dispersive liquid–liquid microextraction-multisyringe flow injection with gas chromatography-mass spectrometry for the determination of sixteen priority PAHs in water. Analytical Methods, 2014, 6, 3335-3344.	1.3	16
42	Automated in-syringe dispersive liquid-liquid microextraction. TrAC - Trends in Analytical Chemistry, 2014, 59, 1-8.	5.8	75
43	Inâ€syringeâ€assisted dispersive liquid–liquid microextraction coupled to gas chromatography with mass spectrometry for the determination of six phthalates in water samples. Journal of Separation Science, 2014, 37, 974-981.	1.3	26
44	In-syringe magnetic stirring assisted dispersive liquid–liquid micro-extraction with solvent washing for fully automated determination of cationic surfactants. Analytical Methods, 2014, 6, 9601-9609.	1.3	30
45	Automatic integrated system for catalytic spectrophotometric determination of vanadium in water samples. Analytical Methods, 2014, 6, 9142-9151.	1.3	7
46	In-syringe magnetic stirring-assisted dispersive liquid–liquid microextraction for automation and downscaling of methylene blue active substances assay. Talanta, 2014, 130, 555-560.	2.9	29
47	Evolution and Description ofÂthe Principal Flow Techniques. , 2014, , 1-42.		7
48	In-syringe magnetic-stirring-assisted liquid–liquid microextraction for the spectrophotometric determination of Cr(VI) in waters. Analytical and Bioanalytical Chemistry, 2013, 405, 6761-6769.	1.9	39
49	In-syringe-stirring: A novel approach for magnetic stirring-assisted dispersive liquid–liquid microextraction. Analytica Chimica Acta, 2013, 788, 52-60.	2.6	77
50	A miniaturized analyzer for the catalytic determination of iodide in seawater and pharmaceutical samples. Talanta, 2013, 108, 92-102.	2.9	28
51	Chip-On-Valve Concept: An Integrated Platform for Multisyringe Flow Injection Analysis: Application to Nitrite and Nitrate Determination in Seawater. Analytical Letters, 2013, 46, 2345-2358.	1.0	10
52	Environmental Applications of Excitation-Emission Spectrofluorimetry: An In-Depth Review I. Applied Spectroscopy Reviews, 2013, 48, 1-49.	3.4	73
53	Conductometric determination of ammonium by a multisyringe flow injection system applying gas diffusion. International Journal of Environmental Analytical Chemistry, 2013, 93, 1236-1252.	1.8	18
54	Laboratory automation based on flow techniques. Pure and Applied Chemistry, 2012, 84, 1983-1998.	0.9	13

#	Article	IF	CITATIONS
55	Determination of ppb-level phenol index using in-syringe dispersive liquid-liquid microextraction and liquid waveguide capillary cell spectrophotometry. Mikrochimica Acta, 2012, 179, 91-98.	2.5	24
56	Fully-Automated Fluorimetric Determination of Aluminum in Seawater by In-Syringe Dispersive Liquid–Liquid Microextraction Using Lumogallion. Analytical Chemistry, 2012, 84, 9462-9469.	3.2	49
57	Automatic determination of copper by in-syringe dispersive liquid–liquid microextraction of its bathocuproine-complex using long path-length spectrophotometric detection. Talanta, 2012, 99, 349-356.	2.9	67
58	Lab in a syringe: fully automated dispersive liquid–liquid microextraction with integrated spectrophotometric detection. Analytical and Bioanalytical Chemistry, 2012, 404, 909-917.	1.9	90
59	Completely automated in-syringe dispersive liquid–liquid microextraction using solvents lighter than water. Analytical and Bioanalytical Chemistry, 2012, 402, 1383-1388.	1.9	70
60	Spectrofluorimetric method for monitoring fluorene in rivers. Analytical Methods, 2011, 3, 1323.	1.3	1
61	Multisyringe Flow Injection Potentialities for Hyphenation with Different Types of Separation Techniques. Analytical Letters, 2011, 44, 360-373.	1.0	12
62	Possibilities and limitations of the sequential injection chromatography technique for the determination of anticoccidial agents in water, pharmaceutical formulations and feed. Microchemical Journal, 2011, 98, 190-199.	2.3	12
63	Exploiting automatic on-line renewable molecularly imprinted solid-phase extraction in lab-on-valve format as front end to liquid chromatography: application to the determination of riboflavin in foodstuffs. Analytical and Bioanalytical Chemistry, 2010, 397, 77-86.	1.9	39
64	Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application. Analytica Chimica Acta, 2010, 658, 147-155.	2.6	12
65	On-line renewable solid-phase extraction hyphenated to liquid chromatography for the determination of UV filters using bead injection and multisyringe-lab-on-valve approach. Journal of Chromatography A, 2010, 1217, 3575-3582.	1.8	51
66	Critical approach to synchronous spectrofluorimetry. II. TrAC - Trends in Analytical Chemistry, 2010, 29, 902-927.	5.8	43
67	Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays. Analytical Chemistry, 2010, 82, 3052-3060.	3.2	45
68	Integrated lab-on-a-valve platform incorporating a sorbent microcolumn and membraneless gas-liquid separation for cold vapor generation-atomic fluorescence spectrometric assays. Journal of Analytical Atomic Spectrometry, 2010, 25, 1717.	1.6	20
69	Interfacing on-line solid phase extraction with monolithic column multisyringe chromatography and chemiluminescence detection: An effective tool for fast, sensitive and selective determination of thiazide diuretics. Talanta, 2010, 80, 1333-1340.	2.9	52
70	Flow analysis techniques as effective tools for the improved environmental analysis of organic compounds expressed as total indices. Talanta, 2010, 81, 1-8.	2.9	32
71	Online Coupling of Bead Injection Lab-On-Valve Analysis to Gas Chromatography: Application to the Determination of Trace Levels of Polychlorinated Biphenyls in Solid Waste Leachates. Analytical Chemistry, 2009, 81, 4822-4830.	3.2	47
72	Multi-syringe chromatography (MSC) system for the on-line solid-phase extraction and determination of hydrochlorothiazide and losartan potassium in superficial water, groundwater and wastewater outlet samples. Journal of Pharmaceutical and Biomedical Analysis, 2008, 48, 212-217.	1.4	39

#	Article	IF	Citations
73	Hyphenating Multisyringe Flow Injection Lab-on-Valve Analysis with Atomic Fluorescence Spectrometry for On-Line Bead Injection Preconcentration and Determination of Trace Levels of Hydride-Forming Elements in Environmental Samples. Analytical Chemistry, 2006, 78, 8290-8298.	3.2	45
74	Automated On-Line Renewable Solid-Phase Extraction-Liquid Chromatography Exploiting Multisyringe Flow Injection-Bead Injection Lab-on-Valve Analysis. Analytical Chemistry, 2006, 78, 2832-2840.	3.2	98
75	At-line determination of formaldehyde in bioprocesses by sequential injection analysis. Analytica Chimica Acta, 2006, 559, 248-256.	2.6	12
76	Multi-pumping flow system for the determination of dissolved orthophosphate and dissolved organic phosphorus in wastewater samples. Analytica Chimica Acta, 2006, 572, 148-154.	2.6	29
77	Automatic pre-concentration and treatment for the analysis of environmental samples using non-chromatographic flow techniques. International Journal of Environmental Analytical Chemistry, 2005, 85, 231-253.	1.8	14
78	Flow-through optical fiber sensor for automatic sulfide determination in waters by multisyringe flow injection analysis using solid-phase reflectometry. Analyst, The, 2005, 130, 644-651.	1.7	42
79	Flow analysis techniques for phosphorus: an overview. Talanta, 2005, 66, 307-331.	2.9	110
80	Interfacing in-line gas-diffusion separation with optrode sorptive preconcentration exploiting multisyringe flow injection analysis. Talanta, 2005, 68, 343-350.	2.9	17
81	Automated Enzymatic Assays in a Renewable Fashion Using the Multisyringe Flow Injection Scheme with Soluble Enzymes. Analytical Chemistry, 2004, 76, 773-780.	3.2	23
82	Application of flowing stream techniques to water analysis. Talanta, 2004, 63, 201-223.	2.9	86
83	Application of flowing-stream techniques to water analysis. Talanta, 2004, 62, 1-15.	2.9	34
84	Application of flowing stream techniques to water analysis. Part I. Ionic species: dissolved inorganic carbon, nutrients and related compounds. Talanta, 2003, 60, 867-886.	2.9	57
85	Sequential Injection90Sr Determination in Environmental Samples Using a Wetting-Film Extraction Method. Analytical Chemistry, 2002, 74, 826-833.	3.2	39
86	A robust multi-syringe system for process flow analysis. Part 3. Time based injection applied to the spectrophotometric determination of nickel(ii) and iron speciation. Analyst, The, 2001, 126, 903-910.	1.7	12
87	Non-linear calibration in single point flow titration of protolytes. Analytica Chimica Acta, 2000, 414, 221-237.	2.6	2
88	A robust multisyringe system for process flow analysis. Analyst, The, 1999, 124, 1373-1381.	1.7	65
89	New approach to sequential injection analysis: using the sample as carrier. Analyst, The, 1998, 123, 1541-1546.	1.7	19
90	Wastewater quality monitoring. TrAC - Trends in Analytical Chemistry, 1997, 16, 419-424.	5.8	84

#	Article	IF	CITATIONS
91	Preconcentration by flow reversal in conductometric sequential injection analysis of ammonium. Electroanalysis, 1996, 8, 387-390.	1.5	31
92	Determination of iron by flow injection based on the catalytic effect of the iron(III)–ethylenediaminetetraacetic acid complex on the oxidation of hydroxylamine by dissolved oxygen. Analyst, The, 1991, 116, 913-917.	1.7	23
93	Nutrient Control. , 0, , 219-245.		0