Christian Lorenzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1072062/publications.pdf

Version: 2024-02-01

159358 143772 101 3,856 30 57 citations h-index g-index papers 127 127 127 2124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18866-18869.	3.3	463
2	Representation of the Temporal Envelope of Sounds in the Human Brain. Journal of Neurophysiology, 2000, 84, 1588-1598.	0.9	314
3	Speechâ€perceptionâ€inâ€noise deficits in dyslexia. Developmental Science, 2009, 12, 732-745.	1.3	261
4	Deficits in speech perception predict language learning impairment. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14110-14115.	3.3	171
5	Temporal Envelope Processing in the Human Left and Right Auditory Cortices. Cerebral Cortex, 2004, 14, 731-740.	1.6	134
6	Masking release for consonant features in temporally fluctuating background noise. Hearing Research, 2006, 211, 74-84.	0.9	113
7	Abnormal processing of temporal fine structure in speech for frequencies where absolute thresholds are normal. Journal of the Acoustical Society of America, 2009, 125, 27-30.	0.5	112
8	Sound localization in noise in normal-hearing listeners. Journal of the Acoustical Society of America, 1999, 105, 1810-1820.	0.5	104
9	The ability of listeners to use recovered envelope cues from speech fine structure. Journal of the Acoustical Society of America, 2006, 119, 2438-2444.	0.5	103
10	A cross-linguistic study of speech modulation spectra. Journal of the Acoustical Society of America, 2017, 142, 1976-1989.	0.5	102
11	Sound localization in noise in hearing-impaired listeners. Journal of the Acoustical Society of America, 1999, 105, 3454-3463.	0.5	82
12	Use of Temporal Envelope Cues by Children With Developmental Dyslexia. Journal of Speech, Language, and Hearing Research, 2000, 43, 1367-1379.	0.7	81
13	On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system. Journal of the Acoustical Society of America, 2013, 133, 2818-2833.	0.5	76
14	Neuropsychological outcome in children with optic pathway tumours when first-line treatment is chemotherapy. British Journal of Cancer, 2003, 89, 2038-2044.	2.9	69
15	Effects of spectral smearing and temporal fine structure degradation on speech masking release. Journal of the Acoustical Society of America, 2009, 125, 4023-4033.	0.5	61
16	Effect of cochlear damage on the detection of complex temporal envelopes. Hearing Research, 2003, 178, 35-43.	0.9	58
17	Speech identification based on temporal fine structure cues. Journal of the Acoustical Society of America, 2008, 124, 562-575.	0.5	58
18	Temporal envelope perception in dyslexic children. NeuroReport, 2002, 13, 1683-1687.	0.6	56

#	Article	IF	Citations
19	Effect of masker modulation depth on speech masking release. Hearing Research, 2008, 239, 60-68.	0.9	52
20	Effects of Age and Hearing Loss on the Relationship Between Discrimination of Stochastic Frequency Modulation and Speech Perception. Ear and Hearing, 2012, 33, 709-720.	1.0	51
21	Speech masking release in listeners with flat hearing loss: Effects of masker fluctuation rate on identification scores and phonetic feature reception. International Journal of Audiology, 2006, 45, 487-495.	0.9	48
22	Effects of lowpass and highpass filtering on the intelligibility of speech based on temporal fine structure or envelope cues. Hearing Research, 2010, 260, 89-95.	0.9	45
23	Second-order temporal modulation transfer functions. Journal of the Acoustical Society of America, 2001, 110, 1030-1038.	0.5	43
24	Effects of envelope expansion on speech recognition. Hearing Research, 1999, 136, 131-138.	0.9	41
25	Noise on, voicing off: Speech perception deficits in children with specific language impairment. Journal of Experimental Child Psychology, 2011, 110, 362-372.	0.7	40
26	Comparing the effects of age on amplitude modulation and frequency modulation detection. Journal of the Acoustical Society of America, 2016, 139, 3088-3096.	0.5	39
27	Effects of periodic interruptions on the intelligibility of speech based on temporal fine-structure or envelope cues. Journal of the Acoustical Society of America, 2007, 122, 1336-1339.	0.5	38
28	Sensorineural hearing loss enhances auditory sensitivity and temporal integration for amplitude modulation. Journal of the Acoustical Society of America, 2017, 141, 971-980.	0.5	37
29	Auditory temporal processing in Parkinson's disease. Neuropsychologia, 2008, 46, 2326-2335.	0.7	34
30	Interactions between amplitude modulation and frequency modulation processing: Effects of age and hearing loss. Journal of the Acoustical Society of America, 2016, 140, 121-131.	0.5	34
31	Second-order modulation detection thresholds for pure-tone and narrow-band noise carriers. Journal of the Acoustical Society of America, 2001, 110, 2470-2478.	0.5	33
32	Temporal envelope expansion of speech in noise for normal-hearing and hearing-impaired listeners: effects on identification performance and response times. Hearing Research, 2001, 153, 123-131.	0.9	30
33	Six-month-old infants discriminate voicing on the basis of temporal envelope cues (L). Journal of the Acoustical Society of America, 2011, 129, 2761-2764.	0.5	29
34	Abnormal speech processing in frequency regions where absolute thresholds are normal for listeners with high-frequency hearing loss. Hearing Research, 2012, 294, 95-103.	0.9	29
35	Discrimination of Speech Sounds Based Upon Temporal Envelope Versus Fine Structure Cues in 5- to 7-Year-Old Children. Journal of Speech, Language, and Hearing Research, 2009, 52, 682-695.	0.7	28
36	Noise-Sensitive But More Precise Subcortical Representations Coexist with Robust Cortical Encoding of Natural Vocalizations. Journal of Neuroscience, 2020, 40, 5228-5246.	1.7	26

#	Article	IF	CITATIONS
37	Neuronal correlates of perceptual amplitude-modulation detection. Hearing Research, 1995, 90, 219-227.	0.9	25
38	Voice onset time encoding in patients with left and right cochlear implants. NeuroReport, 2004, 15, 601-605.	0.6	25
39	Perception of temporal fine-structure cues in speech with minimal envelope cues for listeners with mild-to-moderate hearing loss. International Journal of Audiology, 2010, 49, 823-831.	0.9	25
40	Optimal Combination of Neural Temporal Envelope and Fine Structure Cues to Explain Speech Identification in Background Noise. Journal of Neuroscience, 2014, 34, 12145-12154.	1.7	25
41	Intelligibility of interrupted and interleaved speech for normal-hearing listeners and cochlear implantees. Hearing Research, 2010, 265, 46-53.	0.9	24
42	The perception of speech modulation cues in lexical tones is guided by early language-specific experience. Frontiers in Psychology, 2015, 6, 1290.	1.1	23
43	A twoâ€path model of auditory modulation detection using temporal fine structure and envelope cues. European Journal of Neuroscience, 2020, 51, 1265-1278.	1.2	22
44	Identification of envelope-expanded sentences in normal-hearing and hearing-impaired listeners. Hearing Research, 2004, 189, 13-24.	0.9	21
45	Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus. Journal of Neuroscience, 2018, 38, 4123-4137.	1.7	20
46	The role of spectro-temporal fine structure cues in lexical-tone discrimination for French and Mandarin listeners. Journal of the Acoustical Society of America, 2014, 136, 877-882.	0.5	19
47	Is There a Relationship Between Speech Identification in Noise and Categorical Perception in Children With Dyslexia?. Journal of Speech, Language, and Hearing Research, 2016, 59, 835-852.	0.7	19
48	Robust Neuronal Discrimination in Primary Auditory Cortex Despite Degradations of Spectro-temporal Acoustic Details: Comparison Between Guinea Pigs with Normal Hearing and Mild Age-Related Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2018, 19, 163-180.	0.9	19
49	Auditory temporal envelope processing in a patient with left-hemisphere damage. Neurocase, 2000, 6, 231-244.	0.2	18
50	Modulation masking produced by second-order modulators. Journal of the Acoustical Society of America, 2005, 117, 2158-2168.	0.5	18
51	Temporal and spectral masking release in low- and mid-frequency regions for normal-hearing and hearing-impaired listeners. Journal of the Acoustical Society of America, 2012, 131, 1502-1514.	0.5	18
52	Role of slow temporal modulations in speech identification for cochlear implant users. International Journal of Audiology, 2014, 53, 48-54.	0.9	18
53	Modulation Masking in Listeners With Sensorineural Hearing Loss. Journal of Speech, Language, and Hearing Research, 1997, 40, 200-207.	0.7	17
54	Development of temporal auditory processing in childhood: Changes in efficiency rather than temporal-modulation selectivity. Journal of the Acoustical Society of America, 2019, 146, 2415-2429.	0.5	17

#	Article	IF	CITATIONS
55	The role of envelope beat cues in the detection and discrimination of second-order amplitude modulation (L). Journal of the Acoustical Society of America, 2003, 113, 49-52.	0.5	16
56	Evaluation of two computational models of amplitude modulation coding in the inferior colliculus. Hearing Research, 2006, 211, 54-62.	0.9	16
57	Discrimination of amplitude-modulation phase spectrum. Journal of the Acoustical Society of America, 1999, 105, 2987-2990.	0.5	15
58	Sensorineural hearing loss impairs sensitivity but spares temporal integration for detection of frequency modulation. Journal of the Acoustical Society of America, 2018, 144, 720-733.	0.5	15
59	High-Frequency Sensorineural Hearing Loss Alters Cue-Weighting Strategies for Discriminating Stop Consonants in Noise. Trends in Hearing, 2019, 23, 233121651988670.	0.7	15
60	What Do We Mean by "Soundscape� A Functional Description. Frontiers in Ecology and Evolution, 0, 10, .	1.1	15
61	Importance of temporal-envelope speech cues in different spectral regions. Journal of the Acoustical Society of America, 2011, 130, EL115-EL121.	0.5	14
62	Perception of prosody in normal and whispered French. Journal of the Acoustical Society of America, 2014, 135, 2026-2040.	0.5	14
63	Using individual differences to assess modulation-processing mechanisms and age effects. Hearing Research, 2017, 344, 38-49.	0.9	14
64	Accounting for masking of frequency modulation by amplitude modulation with the modulation filter-bank concept. Journal of the Acoustical Society of America, 2019, 145, 2277-2293.	0.5	14
65	Perception of Speech Modulation Cues by 6-Month-Old Infants. Journal of Speech, Language, and Hearing Research, 2013, 56, 1733-1744.	0.7	13
66	Visual sensitivity to temporal modulations of temporal noise. Vision Research, 2000, 40, 3817-3822.	0.7	12
67	Role of spectral and temporal cues in restoring missing speech information. Journal of the Acoustical Society of America, 2010, 128, EL294-EL299.	0.5	11
68	Infants Discriminate Voicing and Place of Articulation With Reduced Spectral and Temporal Modulation Cues. Journal of Speech, Language, and Hearing Research, 2015, 58, 1033-1042.	0.7	11
69	Dynamic Reweighting of Auditory Modulation Filters. PLoS Computational Biology, 2016, 12, e1005019.	1.5	11
70	Discrimination of temporal asymmetry in cochlear implantees. Journal of the Acoustical Society of America, 1997, 102, 482-485.	0.5	10
71	Effects of amplitude compression on first- and second-order modulation detection thresholds in cochlear implant listeners. International Journal of Audiology, 2004, 43, 264-270.	0.9	10
72	Investigation of perceptual constancy in the temporal-envelope domain. Journal of the Acoustical Society of America, 2008, 123, 1591-1601.	0.5	9

#	Article	IF	Citations
73	The ability of cochlear implant users to use temporal envelope cues recovered from speech frequency modulation. Journal of the Acoustical Society of America, 2012, 132, 1113-1119.	0.5	9
74	Temporal-Envelope Reconstruction for Hearing-Impaired Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 853-865.	0.9	9
75	Effects of Noise Reduction on AM and FM Perception. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 149-157.	0.9	9
76	Characterizing amplitude and frequency modulation cues in natural soundscapes: A pilot study on four habitats of a biosphere reserve. Journal of the Acoustical Society of America, 2020, 147, 3260-3274.	0.5	9
77	Robustness to Noise in the Auditory System: A Distributed and Predictable Property. ENeuro, 2021, 8, ENEURO.0043-21.2021.	0.9	9
78	No adaptation in the amplitude modulation domain in trained listeners. Journal of the Acoustical Society of America, 2006, 119, 3542-3545.	0.5	8
79	Amplitude modulation detection and modulation masking in school-age children and adults. Journal of the Acoustical Society of America, 2019, 145, 2565-2575.	0.5	8
80	Effect of a noise modulation masker on the detection of second-order amplitude modulation. Hearing Research, 2003, 178, 1-11.	0.9	7
81	Effects of spectral smearing on the identification of speech in noise filtered into low- and mid-frequency regions. Journal of the Acoustical Society of America, 2012, 131, 4114-4123.	0.5	7
82	Use of Amplitude Modulation Cues Recovered from Frequency Modulation for Cochlear Implant Users When Original Speech Cues Are Severely Degraded. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 423-439.	0.9	7
83	Perception of the envelope-beat frequency of inharmonic complex temporal envelopes. Journal of the Acoustical Society of America, 2005, 118, 3757-3765.	0.5	6
84	Abnormal intelligibility of speech in competing speech and in noise in a frequency region where audiometric thresholds are near-normal for hearing-impaired listeners. Hearing Research, 2014, 316, 102-109.	0.9	6
85	Physiological prediction of masking release for normal-hearing and hearing-impaired listeners. Proceedings of Meetings on Acoustics, 2013, , .	0.3	6
86	Amplitude Compression in Cochlear Implants Artificially Restricts the Perception of Temporal Asymmetry. International Journal of Audiology, 1998, 32, 367-374.	0.7	5
87	Effect of duration on amplitude-modulation masking. Journal of the Acoustical Society of America, 2002, 111, 2551-2554.	0.5	5
88	Temporal integration for amplitude modulation in childhood: Interaction between internal noise and memory. Hearing Research, 2022, 415, 108403.	0.9	5
89	Modelling firing regularity in the ventral cochlear nucleus: Mechanisms, and effects of stimulus level and synaptopathy. Hearing Research, 2018, 358, 98-110.	0.9	4
90	Mechanisms of Spectrotemporal Modulation Detection for Normal- and Hearing-Impaired Listeners. Trends in Hearing, 2021, 25, 233121652097802.	0.7	4

#	Article	IF	CITATIONS
91	Detection of 1st- and 2nd-order Temporal-envelope Cues in a Patient With Left Superior Cortical Damage. Neurocase, 2004, 10, 189-197.	0.2	3
92	Speech recognition for school-age children and adults tested in multi-tone vs multi-noise-band maskers. Journal of the Acoustical Society of America, 2018, 143, 1458-1466.	0.5	3
93	Probing temporal modulation detection in white noise using intrinsic envelope fluctuations: A reverse-correlation study. Journal of the Acoustical Society of America, 2022, 151, 1353-1366.	0.5	3
94	Effects of Noise Reduction on AM Perception for Hearing-Impaired Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 839-848.	0.9	2
95	Contributions of Age-Related and Audibility-Related Deficits to Aided Consonant Identification in Presbycusis: A Causal-Inference Analysis. Frontiers in Aging Neuroscience, 2021, 13, 640522.	1.7	2
96	Auditory Temporal Envelope Processing in a Patient with Left-hemisphere Damage. Neurocase, 2000, 6, 231-243.	0.2	2
97	Double-pass consistency for amplitude- and frequency-modulation detection in normal-hearing listeners. Journal of the Acoustical Society of America, 2021, 150, 3631-3647.	0.5	2
98	Discrimination of voicing (aba vs. apa)on the basis of Envelope temporal cues in 6-month old infants. Proceedings of Meetings on Acoustics, 2010, , .	0.3	0
99	Downstream changes in firing regularity following damage to the early auditory system. BMC Neuroscience, $2015,16,.$	0.8	O
100	A computational model for amplitude modulation extraction and analysis of simultaneous amplitude modulated signals. European Physical Journal Special Topics, 1994, 04, C5-379-C5-382.	0.2	0
101	Precise and Perceptually Relevant Processing of Amplitude Modulation in the Auditory System. , 1996, , 139-153.		O