
David Gius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10720540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese Superoxide Dismutase Acetylation and Regulation of Protein Structure in Breast Cancer Biology and Therapy. Antioxidants, 2022, 11, 635.	5.1	1
2	MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism. International Journal of Biological Sciences, 2021, 17, 1203-1216.	6.4	7
3	SIRT3 Overexpression Ameliorates Asbestos-Induced Pulmonary Fibrosis, mt-DNA Damage, and Lung Fibrogenic Monocyte Recruitment. International Journal of Molecular Sciences, 2021, 22, 6856.	4.1	22
4	Systemic application of honokiol prevents cisplatin ototoxicity without compromising its antitumor effect. American Journal of Cancer Research, 2020, 10, 4416-4434.	1.4	3
5	SOD2 acetylation on lysine 68 promotes stem cell reprogramming in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23534-23541.	7.1	57
6	Lysine 68 acetylation directs MnSOD as a tetrameric detoxification complex versus a monomeric tumor promoter. Nature Communications, 2019, 10, 2399.	12.8	33
7	Sirtuin 2–mediated deacetylation of cyclin-dependent kinase 9 promotes STAT1 signaling in type I interferon responses. Journal of Biological Chemistry, 2019, 294, 827-837.	3.4	24
8	Loss of Sirt2 increases and prolongs a caerulein-induced pancreatitis permissive phenotype and induces spontaneous oncogenic Kras mutations in mice. Scientific Reports, 2018, 8, 16501.	3.3	13
9	SIRT2 knockout exacerbates insulin resistance in high fat-fed mice. PLoS ONE, 2018, 13, e0208634.	2.5	39
10	Mammalian Sirtuins, Cellular Energy Regulation, and Metabolism, and Carcinogenesis. , 2018, , 141-154.		0
11	Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. Journal of Clinical Investigation, 2018, 128, 3682-3691.	8.2	59
12	SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis. FASEB Journal, 2017, 31, 2520-2532.	0.5	96
13	SIRT3-Mediated Dimerization of IDH2 Directs Cancer Cell Metabolism and Tumor Growth. Cancer Research, 2017, 77, 3990-3999.	0.9	69
14	Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Human Molecular Genetics, 2017, 26, 1915-1926.	2.9	76
15	Loss of NAD-Dependent Protein Deacetylase Sirtuin-2 Alters Mitochondrial Protein Acetylation and Dysregulates Mitophagy. Antioxidants and Redox Signaling, 2017, 26, 849-863.	5.4	107
16	Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. Journal of Biological Chemistry, 2017, 292, 12153-12164.	3.4	107
17	Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2. Journal of Clinical Investigation, 2017, 127, 1505-1516.	8.2	101
18	SIRT2-Mediated Deacetylation and Tetramerization of Pyruvate Kinase Directs Glycolysis and Tumor Growth. Cancer Research, 2016, 76, 3802-3812.	0.9	92

David Gius

#	Article	lF	CITATIONS
19	Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas. Science Advances, 2016, 2, e1601132.	10.3	24
20	ATRIP Deacetylation by SIRT2 Drives ATR Checkpoint Activation by Promoting Binding to RPA-ssDNA. Cell Reports, 2016, 14, 1435-1447.	6.4	54
21	Manganese Superoxide Dismutase Acetylation and Dysregulation, Due to Loss of SIRT3 Activity, Promote a Luminal B-Like Breast Carcinogenic-Permissive Phenotype. Antioxidants and Redox Signaling, 2016, 25, 326-336.	5.4	36
22	SIRT2 deletion enhances KRAS-induced tumorigenesis <i>in vivo</i> by regulating K147 acetylation status. Oncotarget, 2016, 7, 80336-80349.	1.8	35
23	Changes in gene expression in SIRT3 knockout liver cells. Turkish Journal of Biology, 2015, 39, 380-387.	0.8	2
24	Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial Sirt3. Nature Communications, 2015, 6, 6656.	12.8	336
25	SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer & Metabolism, 2014, 2, 15.	5.0	63
26	Regulation of MnSOD Enzymatic Activity by Sirt3 Connects the Mitochondrial Acetylome Signaling Networks to Aging and Carcinogenesis. Antioxidants and Redox Signaling, 2014, 20, 1646-1654.	5.4	148
27	Superoxide Mediates Acute Liver Injury in Irradiated Mice Lacking Sirtuin 3. Antioxidants and Redox Signaling, 2014, 20, 1423-1435.	5.4	30
28	SIRT3 Deacetylates ATP Synthase F ₁ Complex Proteins in Response to Nutrient- and Exercise-Induced Stress. Antioxidants and Redox Signaling, 2014, 21, 551-564.	5.4	159
29	SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radical Biology and Medicine, 2014, 76, 163-172.	2.9	156
30	Decreased mitochondrial SIRT3 expression is a potential molecular biomarker associated with poor outcome in breast cancer. Human Pathology, 2014, 45, 1071-1077.	2.0	68
31	Circadian Clock NAD ⁺ Cycle Drives Mitochondrial Oxidative Metabolism in Mice. Science, 2013, 342, 1243417.	12.6	525
32	Low-Dose Radiation-Induced Enhancement of Thymic Lymphomagenesis in Lck-Bax Mice is Dependent on LET and Gender. Radiation Research, 2013, 180, 156-165.	1.5	5
33	SIRT2 directs the replication stress response through CDK9 deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13546-13551.	7.1	87
34	Bioenergetic and autophagic control by Sirt3Âin response to nutrient deprivation in mouse embryonic fibroblasts. Biochemical Journal, 2013, 454, 249-257.	3.7	64
35	Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radical Biology and Medicine, 2012, 53, 828-833.	2.9	52
36	SIRT3 Is a Mitochondrial Tumor Suppressor: A Scientific Tale That Connects Aberrant Cellular ROS, the Warburg Effect, and Carcinogenesis. Cancer Research, 2012, 72, 2468-2472.	0.9	166

DAVID GIUS

#	Article	IF	CITATIONS
37	SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Translational Cancer Research, 2012, 1, 15-21.	1.0	73
38	Sirt3, Mitochondrial ROS, Ageing, and Carcinogenesis. International Journal of Molecular Sciences, 2011, 12, 6226-6239.	4.1	92
39	Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging, 2011, 3, 102-107.	3.1	132
40	The human sirtuin family: Evolutionary divergences and functions. Human Genomics, 2011, 5, 485.	2.9	148
41	SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis through Regulating APC/C Activity. Cancer Cell, 2011, 20, 487-499.	16.8	460
42	Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochemical Journal, 2011, 433, 505-514.	3.7	339
43	SIRT3 Is a Mitochondria-Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism during Stress. Cancer Cell, 2010, 17, 41-52.	16.8	705
44	SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radical Biology and Medicine, 2010, 49, 1230-1237.	2.9	148
45	Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms. Journal of Cellular Biochemistry, 2010, 110, 238-247.	2.6	99
46	SIRT6 Deficiency Results in Severe Hypoglycemia by Enhancing Both Basal and Insulin-stimulated Glucose Uptake in Mice. Journal of Biological Chemistry, 2010, 285, 36776-36784.	3.4	181
47	Sirt3-Mediated Deacetylation of Evolutionarily Conserved Lysine 122 Regulates MnSOD Activity in Response to Stress. Molecular Cell, 2010, 40, 893-904.	9.7	794
48	Ionizing Radiation-Induced Oxidative Stress Alters miRNA Expression. PLoS ONE, 2009, 4, e6377.	2.5	291
49	Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature, 2008, 451, 202-206.	27.8	777
50	<i>SIRT3</i> interacts with the <i>daf-16</i> homolog <i>FOXO3a</i> in the Mitochondria, as well as increases <i>FOXO3a</i> Dependent Gene expression. International Journal of Biological Sciences, 2008, 4, 291-299.	6.4	250
51	Profiling Microdissected Epithelium and Stroma to Model Genomic Signatures for Cervical Carcinogenesis Accommodating for Covariates. Cancer Research, 2007, 67, 7113-7123.	0.9	87
52	Redox Signaling in Cancer Biology. Antioxidants and Redox Signaling, 2006, 8, 1249-1252.	5.4	182
53	Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Letters, 2006, 236, 164-174.	7.2	148
54	The epigenome as a molecular marker and target. Cancer, 2005, 104, 1789-1793.	4.1	26

David Gius

#	Article	IF	CITATIONS
55	Co-activation of ERK, NF-Î ² B, and GADD45Î ² in Response to Ionizing Radiation. Journal of Biological Chemistry, 2005, 280, 12593-12601.	3.4	65
56	Thioredoxin Reductase as a Potential Molecular Target for Anticancer Agents That Induce Oxidative Stress. Cancer Research, 2004, 64, 6716-6724.	0.9	112
57	Oxidative stress, redox, and the tumor microenvironment. Seminars in Radiation Oncology, 2004, 14, 259-266.	2.2	244
58	Distinct effects on gene expression of chemical and genetic manipulation of the cancer epigenome revealed by a multimodality approach. Cancer Cell, 2004, 6, 361-371.	16.8	172
59	Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer and Metastasis Reviews, 2004, 23, 311-322.	5.9	584
60	Indomethacin and ibuprofen induce Hsc70 nuclear localization and activation of the heat shock response in HeLa cells. Biochemical and Biophysical Research Communications, 2004, 313, 863-870.	2.1	19
61	Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Research, 2003, 63, 8984-95.	0.9	146
62	Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation. Oncogene, 2002, 21, 6317-6327.	5.9	106
63	Cell Cycle-coupled Variation in Topoisomerase IIα mRNA Is Regulated by the 3′-Untranslated Region. Journal of Biological Chemistry, 2000, 275, 38384-38392.	3.4	65
64	Intracellular oxidation/reduction status in the regulation of transcription factors NF-κB and AP-1. Toxicology Letters, 1999, 106, 93-106.	0.8	249