Christian Bressler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10720291/publications.pdf

Version: 2024-02-01

54 papers

4,543 citations

30 h-index 55 g-index

58 all docs 58 docs citations

58 times ranked 3888 citing authors

#	Article	IF	CITATIONS
1	Ultrafast X-ray Absorption Spectroscopy. Chemical Reviews, 2004, 104, 1781-1812.	47.7	444
2	Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature, 2014, 509, 345-348.	27.8	382
3	Ultrafast Nonadiabatic Dynamics of [FeII(bpy)3]2+in Solution. Journal of the American Chemical Society, 2007, 129, 8199-8206.	13.7	303
4	Broadband Femtosecond Fluorescence Spectroscopy of [Ru(bpy)3]2+. Angewandte Chemie - International Edition, 2006, 45, 3174-3176.	13.8	251
5	Photon Beam Transport and Scientific Instruments at the European XFEL. Applied Sciences (Switzerland), 2017, 7, 592.	2.5	232
6	Structural Determination of a Short-Lived Excited Iron(II) Complex by Picosecond X-Ray Absorption Spectroscopy. Physical Review Letters, 2007, 98, 057401.	7.8	204
7	Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics. Journal of Physical Chemistry A, 2013, 117, 735-740.	2.5	183
8	Optimized Finite Difference Method for the Full-Potential XANES Simulations: Application to Molecular Adsorption Geometries in MOFs and Metal–Ligand Intersystem Crossing Transients. Journal of Chemical Theory and Computation, 2015, 11, 4512-4521.	5. 3	179
9	Observing Photochemical Transients by Ultrafast X-Ray Absorption Spectroscopy. Physical Review Letters, 2003, 90, 047403.	7.8	167
10	Electronic and Molecular Structure of Photoexcited [Rull(bpy)3]2+Probed by Picosecond X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2006, 128, 5001-5009.	13.7	165
11	Vibrational Coherences and Relaxation in the Highâ€Spin State of Aqueous [Fe ^{II} (bpy) ₃] ²⁺ . Angewandte Chemie - International Edition, 2009, 48, 7184-7187.	13.8	164
12	Molecular Structural Dynamics Probed by Ultrafast X-Ray Absorption Spectroscopy. Annual Review of Physical Chemistry, 2010, 61, 263-282.	10.8	150
13	Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses. Nature Communications, 2015, 6, 6359.	12.8	134
14	Structural Determination of a Photochemically Active Diplatinum Molecule by Timeâ€Resolved EXAFS Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 2711-2714.	13.8	116
15	Picosecond Timeâ€Resolved Xâ€Ray Emission Spectroscopy: Ultrafast Spinâ€State Determination in an Iron Complex. Angewandte Chemie - International Edition, 2010, 49, 5910-5912.	13.8	99
16	A setup for ultrafast time-resolved x-ray absorption spectroscopy. Review of Scientific Instruments, 2004, 75, 24-30.	1.3	91
17	Spin-state studies with XES and RIXS: From static to ultrafast. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 166-171. Femtosecond X-Ray Scattering Study of Ultrafast Photoinduced Structural Dynamics in	1.7	87
18	Solvated solvated solvated solvated solvated solvated smml:mi>co co co co <a href=" mailto:<="" td=""><td>py<i>71</i>8 mml:n</td><td>ntext><mml:n< td=""></mml:n<></td>	py <i>71</i> 8 mml:n	ntext> <mml:n< td=""></mml:n<>

#	Article	IF	CITATIONS
19	Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering. Journal of Physical Chemistry B, 2016, 120, 1158-1168.	2.6	85
20	Exploiting EXAFS and XANES for time-resolved molecular structures in liquids. Zeitschrift FÃ $\frac{1}{4}$ r Kristallographie, 2008, 223, 307-321.	1.1	72
21	Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy) ₂] ²⁺ . Journal of Physical Chemistry C, 2015, 119, 5888-5902.	3.1	72
22	Probing the Transition from Hydrophilic to Hydrophobic Solvation with Atomic Scale Resolution. Journal of the American Chemical Society, 2011, 133, 12740-12748.	13.7	71
23	Towards structural dynamics in condensed chemical systems exploiting ultrafast time-resolved x-ray absorption spectroscopy. Journal of Chemical Physics, 2002, 116, 2955-2966.	3.0	65
24	Observation of the Solvent Shell Reorganization around Photoexcited Atomic Solutes by Picosecond X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2007, 129, 1530-1531.	13.7	62
25	Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nature Communications, 2019, 10, 3606.	12.8	56
26	Toward Highlighting the Ultrafast Electron Transfer Dynamics at the Optically Dark Sites of Photocatalysts. Journal of Physical Chemistry Letters, 2013, 4, 1972-1976.	4.6	49
27	A Full Multiple Scattering Model for the Analysis of Time-Resolved X-ray Difference Absorption Spectra. Journal of Physical Chemistry B, 2006, 110, 14035-14039.	2.6	41
28	Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species. Journal of Physical Chemistry C, 2015, 119, 14571-14578.	3.1	40
29	Ultrafast X-ray Photochemistry at European XFEL: Capabilities of the Femtosecond X-ray Experiments (FXE) Instrument. Applied Sciences (Switzerland), 2020, 10, 995.	2.5	35
30	Using Ultrafast X-ray Spectroscopy To Address Questions in Ligand-Field Theory: The Excited State Spin and Structure of [Fe(dcpp) ₂] ²⁺ . Inorganic Chemistry, 2019, 58, 9341-9350.	4.0	29
31	Femtosecond X-ray emission study of the spin cross-over dynamics in haem proteins. Nature Communications, 2020, 11, 4145.	12.8	29
32	Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 2620-2626.	3.1	27
33	Spin cascade and doming in ferric hemes: Femtosecond X-ray absorption and X-ray emission studies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21914-21920.	7.1	27
34	Ultrafast timeâ€resolved Xâ€ray absorption spectroscopy of chemical systems. Synchrotron Radiation News, 2003, 16, 12-20.	0.8	24
35	Scientific instrument Femtosecond X-ray Experiments (FXE): instrumentation and baseline experimental capabilities. Journal of Synchrotron Radiation, 2019, 26, 1432-1447.	2.4	24
36	EXAFS Structural Determination of the Pt ₂ (P ₂ O ₅ H ₂) ₄ ^{4–} Anion in Solution. Chimia, 2008, 62, 287-290.	0.6	21

#	Article	IF	Citations
37	Strong Nuclear Ring Currents and Magnetic Fields in Pseudorotating OsH ₄ Molecules Induced by Circularly Polarized Laser Pulses. Chemistry - an Asian Journal, 2012, 7, 1261-1295.	3.3	20
38	Optimizing a time-resolved X-ray absorption experiment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1444-1446.	1.6	16
39	Light-Induced Spin Crossover Probed by Ultrafast Optical and X-ray Spectroscopies. Chimia, 2007, 61, 179-183.	0.6	15
40	Identifying the major intermediate species by combining time-resolved X-ray solution scattering and X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 23298-23302.	2.8	15
41	Structural dynamics upon photoexcitation-induced charge transfer in a dicopper(<scp>i</scp>)–disulfide complex. Physical Chemistry Chemical Physics, 2018, 20, 6274-6286.	2.8	13
42	Two MHz tunable non collinear optical parametric amplifiers with pulse durations down to 6 fs. Optics Express, 2014, 22, 14964.	3.4	12
43	A multi-MHz single-shot data acquisition scheme with high dynamic range: pump–probe X-ray experiments at synchrotrons. Journal of Synchrotron Radiation, 2016, 23, 1409-1423.	2.4	12
44	Revealing Hot and Long-Lived Metastable Spin States in the Photoinduced Switching of Solvated Metallogrid Complexes with Femtosecond Optical and X-ray Spectroscopies. Journal of Physical Chemistry Letters, 2020, 11, 2133-2141.	4.6	11
45	<title>Laser and synchrotron radiation pump-probe x-ray absorption experiment with sub-ns resolution</title> ., 1998, 3451, 108.		10
46	Exploring the light-induced dynamics in solvated metallogrid complexes with femtosecond pulses across the electromagnetic spectrum. Journal of Chemical Physics, 2020, 152, 214301.	3.0	10
47	Time-resolved x-ray absorption spectroscopy: Watching atoms dance. Journal of Physics: Conference Series, 2009, 190, 012052.	0.4	9
48	A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Scientific Reports, 2021, 11, 3562.	3.3	5
49	Siteâ€Selective Realâ€Time Observation of Bimolecular Electron Transfer in a Photocatalytic System Using Lâ€Edge Xâ€Ray Absorption Spectroscopy**. ChemPhysChem, 2021, 22, 693-700.	2.1	5
50	Retrieving photochemically active structures by time-resolved EXAFS spectroscopy. Journal of Physics: Conference Series, 2009, 190, 012054.	0.4	3
51	Spectroscopic Signatures of the Dynamical Hydrophobic Solvation Shell Formation. Journal of Physical Chemistry B, 2019, 123, 2106-2113.	2.6	3
52	Ultrafast X-Ray Absorption Spectroscopy. ChemInform, 2004, 35, no.	0.0	1
53	Observing molecular structure changes and dynamics in polar solution. , 2007, , 689-731.		1
54	2ÂMHz Tunable Non Collinear Optical Parametric Amplifiers with Pulse Durations Down to 6Âfs. Springer Proceedings in Physics, 2015, , 761-765.	0.2	0