Kunpeng Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1071996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-low thermal conductivity and high thermoelectric performance of two-dimensional triphosphides (InP ₃ , GaP ₃ , SbP ₃ and SnP ₃): a comprehensive first-principles study. Nanoscale, 2020, 12, 3330-3342.	5.6	68
2	Effects of tensile strain and finite size on thermal conductivity in monolayer WSe ₂ . Physical Chemistry Chemical Physics, 2019, 21, 468-477.	2.8	60
3	Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations. Physical Review B, 2018, 98, .	3.2	42
4	A first-principles study of the thermoelectric properties of rhombohedral GeSe. Physical Chemistry Chemical Physics, 2020, 22, 1911-1922.	2.8	32
5	Lattice Thermal Conductivity Prediction Using Symbolic Regression and Machine Learning. Journal of Physical Chemistry A, 2021, 125, 435-450.	2.5	32
6	Disparate strain response of the thermal transport properties of bilayer penta-graphene as compared to that of monolayer penta-graphene. Physical Chemistry Chemical Physics, 2019, 21, 15647-15655.	2.8	28
7	Self-Assembled Monolayers for the Polymer/Semiconductor Interface with Improved Interfacial Thermal Management. ACS Applied Materials & Interfaces, 2019, 11, 42708-42714.	8.0	27
8	Predicting Elastic Properties of Materials from Electronic Charge Density Using 3D Deep Convolutional Neural Networks. Journal of Physical Chemistry C, 2020, 124, 17262-17273.	3.1	23
9	Tailoring phononic, electronic, and thermoelectric properties of orthorhombic GeSe through hydrostatic pressure. Scientific Reports, 2019, 9, 9490.	3.3	21
10	Efficient thermal conductivity modulation by manipulating interlayer interactions: A comparative study of bilayer graphene and graphite. Journal of Applied Physics, 2019, 126, .	2.5	21
11	Pressure tuning of the thermal conductivity of gallium arsenide from first-principles calculations. Physical Chemistry Chemical Physics, 2018, 20, 30331-30339.	2.8	16
12	Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure. Nanoscale, 2020, 12, 19178-19190.	5.6	15
13	First-principles calculations of interfacial thermal transport properties between SiC/Si substrates and compounds of boron with selected group V elements. Physical Chemistry Chemical Physics, 2019, 21, 6011-6020.	2.8	14
14	First-principles analysis of phonon thermal transport properties of two-dimensional WS ₂ /WSe ₂ heterostructures*. Chinese Physics B, 2021, 30, 034401.	1.4	13
15	Why thermal conductivity of CaO is lower than that of CaS: a study from the perspective of phonon splitting of optical mode. Nanotechnology, 2021, 32, 025709.	2.6	13
16	Ultralow lattice thermal conductivity and dramatically enhanced thermoelectric properties of monolayer InSe induced by an external electric field. Physical Chemistry Chemical Physics, 2021, 23, 13633-13646.	2.8	10
17	Zintl Phase Compounds Mg3Sb2â^'xBix (x = 0, 1, and 2) Monolayers: Electronic, Phonon and Thermoelectric Properties From ab Initio Calculations. Frontiers in Mechanical Engineering, 2022, 8,	1.8	7
18	The Abnormally Excellent Figure of Merit of 14,14,18-Graphyne at Room Temperature: A Study on the Thermoelectric Characteristic of Graphyne. ACS Applied Energy Materials, 2022, 5, 6363-6372.	5.1	6

KUNPENG YUAN

#	Article	IF	CITATIONS
19	Thermal conductivity of SrTiO3 under high-pressure. Applied Physics Letters, 2022, 120, .	3.3	6
20	Alkaline treatment of used carbon-brush anodes for restoring power generation of microbial fuel cells. RSC Advances, 2018, 8, 36754-36760.	3.6	5
21	Low thermal conductivity of peanut-shaped carbon nanotube and its insensitive response to uniaxial strain. Nanotechnology, 2020, 31, 115701.	2.6	4
22	Giant Manipulation of Phonon Hydrodynamics in Ferroelectric Bilayer Boron Nitride at Room Temperature and Beyond. ACS Applied Energy Materials, 2022, 5, 8781-8790.	5.1	4
23	Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX ₂ (X = C and N) compounds. Physical Chemistry Chemical Physics, 2021, 23, 23718-23729.	2.8	2