Yu-Pei Liao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1071952/yu-pei-liao-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30	1,657	19	33
papers	citations	h-index	g-index
33	2,064 ext. citations	13.3	4.48
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
30	Use of a liver-targeting nanoparticle platform to intervene in peanut-induced anaphylaxis through delivery of an Ara h2 T-cell epitope. <i>Nano Today</i> , 2022 , 42, 101370	17.9	1
29	NLRP3 inflammasome activation determines the fibrogenic potential of PM air pollution particles in the lung <i>Journal of Environmental Sciences</i> , 2022 , 111, 429-441	6.4	6
28	Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemo-Immunotherapy. <i>Small</i> , 2021 , 17, e2005993	11	18
27	Lateral size of graphene oxide determines differential cellular uptake and cell death pathways in Kupffer cells, LSECs, and hepatocytes. <i>Nano Today</i> , 2021 , 37, 101061-101061	17.9	21
26	Silicasome Nanocarriers: Development of Facile and Versatile Platinum Drug Delivering Silicasome Nanocarriers for Efficient Pancreatic Cancer Chemo-Immunotherapy (Small 14/2021). <i>Small</i> , 2021 , 17, 2170065	11	1
25	Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Non-Toxic 2D Boron Nitride Effects. <i>Small</i> , 2021 , 17, e2101084	11	4
24	Antigen- and Epitope-Delivering Nanoparticles Targeting Liver Induce Comparable Immunotolerance in Allergic Airway Disease and Anaphylaxis as Nanoparticle-Delivering Pharmaceuticals. <i>ACS Nano</i> , 2021 , 15, 1608-1626	16.7	16
23	Combination Chemo-Immunotherapy for Pancreatic Cancer Using the Immunogenic Effects of an Irinotecan Silicasome Nanocarrier Plus Anti-PD-1. <i>Advanced Science</i> , 2021 , 8, 2002147	13.6	14
22	Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor. <i>Biomaterials</i> , 2021 , 269, 120635	15.6	13
21	Nanocellulose Length Determines the Differential Cytotoxic Effects and Inflammatory Responses in Macrophages and Hepatocytes. <i>Small</i> , 2021 , 17, e2102545	11	8
20	Mechanistic Differences in Cell Death Responses to Metal-Based Engineered Nanomaterials in Kupffer Cells and Hepatocytes. <i>Small</i> , 2020 , 16, e2000528	11	21
19	Use of ratiometrically designed nanocarrier targeting CDK4/6 and autophagy pathways for effective pancreatic cancer treatment. <i>Nature Communications</i> , 2020 , 11, 4249	17.4	21
18	Liposomal Delivery of Mitoxantrone and a Cholesteryl Indoximod Prodrug Provides Effective Chemo-immunotherapy in Multiple Solid Tumors. <i>ACS Nano</i> , 2020 , 14, 13343-13366	16.7	37
17	The Crystallinity and Aspect Ratio of Cellulose Nanomaterials Determine Their Pro-Inflammatory and Immune Adjuvant Effects In Vitro and In Vivo. <i>Small</i> , 2019 , 15, e1901642	11	26
16	Use of Polymeric Nanoparticle Platform Targeting the Liver To Induce Treg-Mediated Antigen-Specific Immune Tolerance in a Pulmonary Allergen Sensitization Model. <i>ACS Nano</i> , 2019 , 13, 4778-4794	16.7	51
15	Development of self-assembled multi-arm polyrotaxanes nanocarriers for systemic plasmid delivery in vivo. <i>Biomaterials</i> , 2019 , 192, 416-428	15.6	21
14	Improved Efficacy and Reduced Toxicity Using a Custom-Designed Irinotecan-Delivering Silicasome for Orthotopic Colon Cancer. <i>ACS Nano</i> , 2019 , 13, 38-53	16.7	51

LIST OF PUBLICATIONS

13	Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model. <i>ACS Nano</i> , 2018 , 12, 1390-1402	16.7	154
12	Toxicological Profiling of Metal Oxide Nanoparticles in Liver Context Reveals Pyroptosis in Kupffer Cells and Macrophages versus Apoptosis in Hepatocytes. <i>ACS Nano</i> , 2018 , 12, 3836-3852	16.7	91
11	Toxicological Profiling of Highly Purified Single-Walled Carbon Nanotubes with Different Lengths in the Rodent Lung and Escherichia Coli. <i>Small</i> , 2018 , 14, e1703915	11	18
10	Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung. <i>ACS Nano</i> , 2017 , 11, 1869-1883	16.7	13
9	Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. <i>Particle and Fibre Toxicology</i> , 2017 , 14, 13	8.4	46
8	Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. <i>Nature Communications</i> , 2017 , 8, 1811	17.4	259
7	Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. <i>Journal of Clinical Investigation</i> , 2017 , 127, 2007-2018	15.9	118
6	NADPH Oxidase-Dependent NLRP3 Inflammasome Activation and its Important Role in Lung Fibrosis by Multiwalled Carbon Nanotubes. <i>Small</i> , 2015 , 11, 2087-97	11	123
5	Enhancing the imaging and biosafety of upconversion nanoparticles through phosphonate coating. <i>ACS Nano</i> , 2015 , 9, 3293-306	16.7	113
4	Differences in the Toxicological Potential of 2D versus Aggregated Molybdenum Disulfide in the Lung. <i>Small</i> , 2015 , 11, 5079-87	11	76
3	Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. <i>ACS Nano</i> , 2014 , 8, 1771-83	16.7	177
2	Modification of the tumor microenvironment to enhance immunity. <i>Frontiers in Bioscience - Landmark</i> , 2007 , 12, 3576-600	2.8	39
1	Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells. <i>Journal of Immunology</i> , 2004 , 173, 2462-9	5.3	94