David Stapleton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10719089/publications.pdf

Version: 2024-02-01

40 papers

6,522 citations

35 h-index 302126 39 g-index

40 all docs

40 docs citations

times ranked

40

5782 citing authors

#	Article	IF	CITATIONS
1	AMP-Activated Protein Kinase \hat{l}^2 -Subunit Requires Internal Motion for \hat{A} Optimal Carbohydrate Binding. Biophysical Journal, 2012, 102, 305-314.	0.5	18
2	AMPK \hat{l}^2 subunits display isoform specific affinities for carbohydrates. FEBS Letters, 2010, 584, 3499-3503.	2.8	55
3	Analysis of hepatic glycogenâ€associated proteins. Proteomics, 2010, 10, 2320-2329.	2.2	75
4	5â€aminoimidazoleâ€4â€carboxamide ribonucleoside and AMPâ€activated protein kinase inhibit signalling through NFâ€₽B. Immunology and Cell Biology, 2010, 88, 754-760.	2.3	50
5	Comparative structural analyses of purified glycogen particles from rat liver, human skeletal muscle and commercial preparations. International Journal of Biological Macromolecules, 2009, 45, 478-482.	7.5	82
6	Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase \hat{l}^2 1-Containing Complexes. Chemistry and Biology, 2008, 15, 1220-1230.	6.0	221
7	AMP-activated Protein Kinase Subunit Interactions. Journal of Biological Chemistry, 2008, 283, 4799-4807.	3.4	29
8	AMP-activated protein kinase does not associate with glycogen α-particles from rat liver. Biochemical and Biophysical Research Communications, 2007, 362, 811-815.	2.1	36
9	Oligosaccharide recognition and binding to the carbohydrate binding module of AMPâ€activated protein kinase. FEBS Letters, 2007, 581, 5055-5059.	2.8	37
10	Reduced glycogen availability is associated with increased AMPKα2 activity, nuclear AMPKα2 protein abundance, and GLUT4 mRNA expression in contracting human skeletal muscle. Applied Physiology, Nutrition and Metabolism, 2006, 31, 302-312.	1.9	83
11	Structural Basis for Glycogen Recognition by AMP-Activated Protein Kinase. Structure, 2005, 13, 1453-1462.	3.3	175
12	Crystallization of the glycogen-binding domain of the AMP-activated protein kinase \hat{l}^2 subunit and preliminary X-ray analysis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 39-42.	0.7	12
13	Regulation of the energy sensor AMP-activated protein kinase in the kidney by dietary salt intake and osmolality. American Journal of Physiology - Renal Physiology, 2005, 288, F578-F586.	2.7	63
14	Increased α2 Subunit–Associated AMPK Activity and PRKAG2 Cardiomyopathy. Circulation, 2005, 112, 3140-3148.	1.6	83
15	AMP-activated Protein Kinase β Subunit Tethers α and γ Subunits via Its C-terminal Sequence (186–270). Journal of Biological Chemistry, 2005, 280, 13395-13400.	3.4	117
16	Cytoplasmic ATP-sensing Domains Regulate Gating of Skeletal Muscle ClC-1 Chloride Channels. Journal of Biological Chemistry, 2005, 280, 32452-32458.	3.4	106
17	Ectopic EphA4 Receptor Induces Posterior Protrusions via FGF Signaling in Xenopus Embryos. Molecular Biology of the Cell, 2004, 15, 1647-1655.	2.1	39
18	Mutations in the Gal83 Glycogen-Binding Domain Activate the Snf1/Gal83 Kinase Pathway by a Glycogen-Independent Mechanism. Molecular and Cellular Biology, 2004, 24, 352-361.	2.3	50

#	Article	IF	CITATIONS
19	The 5′-AMP-activated Protein Kinase γ3 Isoform Has a Key Role in Carbohydrate and Lipid Metabolism in Glycolytic Skeletal Muscle. Journal of Biological Chemistry, 2004, 279, 38441-38447.	3.4	264
20	Intrasteric control of AMPK via the Â1 subunit AMP allosteric regulatory site. Protein Science, 2004, 13, 155-165.	7.6	141
21	AMPK Î ² Subunit Targets Metabolic Stress Sensing to Glycogen. Current Biology, 2003, 13, 867-871.	3.9	377
22	Transgenic Mice Overexpressing Mutant <i>PRKAG2</i> Define the Cause of Wolff-Parkinson-White Syndrome in Glycogen Storage Cardiomyopathy. Circulation, 2003, 107, 2850-2856.	1.6	300
23	AMP-activated protein kinase kinase: detection with recombinant AMPK $\hat{l}\pm 1$ subunit. Biochemical and Biophysical Research Communications, 2002, 293, 892-898.	2.1	60
24	An activating mutation in the \hat{I}^31 subunit of the AMP-activated protein kinase. FEBS Letters, 2001, 500, 163-168.	2.8	100
25	Post-translational modifications of the \hat{l}^2 -1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochemical Journal, 2001, 354, 275.	3.7	151
26	Post-translational modifications of the \hat{l}^2 -1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochemical Journal, 2001, 354, 275-283.	3.7	226
27	Coordinated Control of Endothelial Nitric-oxide Synthase Phosphorylation by Protein Kinase C and the cAMP-dependent Protein Kinase. Journal of Biological Chemistry, 2001, 276, 17625-17628.	3.4	484
28	The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nature Structural Biology, 1999, 6, 44-49.	9.7	229
29	Dealing with energy demand: the AMP-activated protein kinase. Trends in Biochemical Sciences, 1999, 24, 22-25.	7.5	488
30	AMPâ€activated protein kinase phosphorylation of endothelial NO synthase. FEBS Letters, 1999, 443, 285-289.	2.8	729
31	Expression of the AMP-activated protein kinase \hat{l}^21 and \hat{l}^22 subunits in skeletal muscle. FEBS Letters, 1999, 460, 343-348.	2.8	114
32	Cellular Distribution and Developmental Expression of AMPâ€Activated Protein Kinase Isoforms in Mouse Central Nervous System. Journal of Neurochemistry, 1999, 72, 1707-1716.	3.9	238
33	Posttranslational Modifications of the $5\hat{a}\in^2$ -AMP-activated Protein Kinase \hat{l}^21 Subunit. Journal of Biological Chemistry, 1997, 272, 24475-24479.	3.4	135
34	AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Letters, 1997, 409, 452-456.	2.8	112
35	Isoform-specific Purification and Substrate Specificity of the 5′-AMP-activated Protein Kinase. Journal of Biological Chemistry, 1996, 271, 28445-28450.	3.4	108
36	Non-catalytic - and -Subunit Isoforms of the 5′-AMP-activated Protein Kinase. Journal of Biological Chemistry, 1996, 271, 8675-8681.	3.4	120

#	Article	IF	CITATIONS
37	Regulation of $5\hat{a}\in^2$ -AMP-activated Protein Kinase Activity by the Noncatalytic \hat{l}^2 and \hat{l}^3 Subunits. Journal of Biological Chemistry, 1996, 271, 17798-17803.	3.4	171
38	Mammalian AMP-activated Protein Kinase Subfamily. Journal of Biological Chemistry, 1996, 271, 611-614.	3.4	569
39	Catalytic subunits of the porcine and rat $5\hat{a}\in^2$ -AMP-activated protein kinase are members of the SNF1 protein kinase family. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1266, 73-82.	4.1	75
40	AMPK beta1. The AFCS-nature Molecule Pages, 0, , .	0.2	0