James M Robins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10718977/publications.pdf Version: 2024-02-01

		6613	2509
197	43,153	79	196
papers	citations	h-index	g-index
212	212	212	30893
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Coherent Modeling of Longitudinal Causal Effects on Binary Outcomes. Biometrics, 2023, 79, 775-787.	1.4	1
2	Conditional Separable Effects. Journal of the American Statistical Association, 2023, 118, 2671-2683.	3.1	5
3	Separable Effects for Causal Inference in the Presence of Competing Events. Journal of the American Statistical Association, 2022, 117, 175-183.	3.1	45
4	Multiply robust estimators of causal effects for survival outcomes. Scandinavian Journal of Statistics, 2022, 49, 1304-1328.	1.4	5
5	Study Designs for Extending Causal Inferences From a Randomized Trial to a Target Population. American Journal of Epidemiology, 2021, 190, 1632-1642.	3.4	35
6	Parametric gâ€formula implementations for causal survival analyses. Biometrics, 2021, 77, 740-753.	1.4	14
7	Efficient Estimation of Optimal Regimes Under a No Direct Effect Assumption. Journal of the American Statistical Association, 2021, 116, 224-239.	3.1	1
8	Estimation of local treatment effects under the binary instrumental variable model. Biometrika, 2021, 108, 881-894.	2.4	4
9	Discussion of â€~Estimating time-varying causal excursion effects in mobile health with binary outcomes'. Biometrika, 2021, 108, 541-550.	2.4	2
10	A generalized theory of separable effects in competing event settings. Lifetime Data Analysis, 2021, 27, 588-631.	0.9	19
11	On Causal Inferences for Personalized Medicine: How Hidden Causal Assumptions Led to Erroneous Causal Claims About the D-Value. American Statistician, 2020, 74, 243-248.	1.6	3
12	Weight Gain After Smoking Cessation and Lifestyle Strategies to Reduce it. Epidemiology, 2020, 31, 7-14.	2.7	16
13	Benchmarking Observational Methods by Comparing Randomized Trials and Their Emulations. Epidemiology, 2020, 31, 614-619.	2.7	30
14	The Challenges of Parameterizing Direct Effects in Individual-Level Simulation Models. Medical Decision Making, 2020, 40, 106-111.	2.4	7
15	Hypothetical Lifestyle Strategies in Middle-Aged Women and the Long-Term Risk of Stroke. Stroke, 2020, 51, 1381-1387.	2.0	15
16	Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning. Statistical Science, 2020, 35, .	2.8	2
17	On Nearly Assumption-Free Tests of Nominal Confidence Interval Coverage for Causal Parameters Estimated by Machine Learning. Statistical Science, 2020, 35, .	2.8	2
18	Inverse Probability Weighted Estimation of Risk Under Representative Interventions in Observational Studies. Journal of the American Statistical Association, 2019, 114, 938-947.	3.1	21

#	Article	IF	CITATIONS
19	Emulating a trial of joint dynamic strategies: An application to monitoring and treatment of HIVâ€positive individuals. Statistics in Medicine, 2019, 38, 2428-2446.	1.6	13
20	Identification In Missing Data Models Represented By Directed Acyclic Graphs. Uncertainty in artificial intelligence : proceedings of the conference., 2019, 2019, .	0.9	3
21	Discussion of "Data-driven Confounder Selection via Markov and Bayesian Networks―By HÃǥgström. Biometrics, 2018, 74, 403-406.	1.4	3
22	Using Observational Data to Calibrate Simulation Models. Medical Decision Making, 2018, 38, 212-224.	2.4	10
23	Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes. Journal of the American Statistical Association, 2018, 113, 933-947.	3.1	59
24	On Modeling and Estimation for the Relative Risk and Risk Difference. Journal of the American Statistical Association, 2017, 112, 1121-1130.	3.1	33
25	Comparison of dynamic monitoring strategies based on CD4 cell counts in virally suppressed, HIV-positive individuals on combination antiretroviral therapy in high-income countries: a prospective, observational study. Lancet HIV,the, 2017, 4, e251-e259.	4.7	10
26	Per-Protocol Analyses of Pragmatic Trials. New England Journal of Medicine, 2017, 377, 1391-1398.	27.0	358
27	An Apparent Paradox Explained. Statistical Science, 2017, 32, .	2.8	5
28	Minimax estimation of a functional on a structured high-dimensional model. Annals of Statistics, 2017, 45, 1951-1987.	2.6	44
29	A Comparison of Agent-Based Models and the Parametric G-Formula for Causal Inference. American Journal of Epidemiology, 2017, 186, 131-142.	3.4	57
30	On falsification of the binary instrumental variable model. Biometrika, 2017, 104, asw064.	2.4	9
31	3. Observational Studies Analyzed Like Randomized Trials and Vice Versa. , 2017, , 107-128.		2
32	Comparative Effectiveness Research Using Observational Data: Active Comparators to Emulate Target Trials with Inactive Comparators. EGEMS (Washington, DC), 2017, 4, 20.	2.0	28
33	When to Monitor CD4 Cell Count and HIV RNA to Reduce Mortality and AIDS-Defining Illness in Virologically Suppressed HIV-Positive Persons on Antiretroviral Therapy in High-Income Countries. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 72, 214-221.	2.1	22
34	Re: Causality and causal inference in epidemiology: the need for a pluralistic approach. International Journal of Epidemiology, 2016, 45, dyw162.	1.9	14
35	Smoking cessation and long-term weight gain in the Framingham Heart Study: an application of the parametric g-formula for a continuous outcome. European Journal of Epidemiology, 2016, 31, 1223-1229.	5.7	31
36	Asymptotic normality of quadratic estimators. Stochastic Processes and Their Applications, 2016, 126, 3733-3759.	0.9	10

#	Article	IF	CITATIONS
37	Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available: TableÂ1 American Journal of Epidemiology, 2016, 183, 758-764.	3.4	1,291
38	Using observational data to emulate a randomized trial of dynamic treatment-switching strategies: an application to antiretroviral therapy. International Journal of Epidemiology, 2016, 45, 2038-2049.	1.9	43
39	Counterfactual causation and streetlamps: what is to be done?. International Journal of Epidemiology, 2016, 45, dyw231.	1.9	20
40	Definition and Evaluation of the Monotonicity Condition for Preference-based Instruments. Epidemiology, 2015, 26, 414-420.	2.7	32
41	Discussion of "On Bayesian Estimation of Marginal Structural Models― Biometrics, 2015, 71, 296-299.	1.4	19
42	Discussion of a Paper by Professor Miettinen. Epidemiologic Methods, 2015, 4, .	0.9	2
43	The Impact of Different CD4 Cell-Count Monitoring and Switching Strategies on Mortality in HIV-Infected African Adults on Antiretroviral Therapy: An Application of Dynamic Marginal Structural Models. American Journal of Epidemiology, 2015, 182, 633-643.	3.4	16
44	Selecting on Treatment: A Pervasive Form of Bias in Instrumental Variable Analyses. American Journal of Epidemiology, 2015, 181, 191-197.	3.4	52
45	A Proof of Bell's Inequality in Quantum Mechanics Using Causal interactions. Scandinavian Journal of Statistics, 2015, 42, 329-335.	1.4	4
46	Methods to Estimate the Comparative Effectiveness of Clinical Strategies that Administer the Same Intervention at Different Times. Current Epidemiology Reports, 2015, 2, 149-161.	2.4	15
47	Weight loss and coronary heart disease. Epidemiology, 2015, 27, 1.	2.7	24
48	Introduction to Nested Markov Models. Behaviormetrika, 2014, 41, 3-39.	1.3	23
49	Identification, Estimation and Approximation of Risk under Interventions that Depend on the Natural Value of Treatment Using Observational Data. Epidemiologic Methods, 2014, 3, 1-19.	0.9	84
50	ACE Bounds; SEMs with Equilibrium Conditions. Statistical Science, 2014, 29, .	2.8	10
51	On weighting approaches for missing data. Statistical Methods in Medical Research, 2013, 22, 14-30.	1.5	76
52	Randomized Trials Analyzed as Observational Studies. Annals of Internal Medicine, 2013, 159, 560-2.	3.9	125
53	A Mapping Between Interactions and Interference. Epidemiology, 2012, 23, 285-292.	2.7	14
54	Credible Mendelian Randomization Studies: Approaches for Evaluating the Instrumental Variable Assumptions. American Journal of Epidemiology, 2012, 175, 332-339.	3.4	217

#	Article	IF	CITATIONS
55	Improved double-robust estimation in missing data and causal inference models. Biometrika, 2012, 99, 439-456.	2.4	112
56	Structural Nested Cumulative Failure Time Models to Estimate the Effects of Interventions. Journal of the American Statistical Association, 2012, 107, 886-900.	3.1	34
57	Semiparametric Tests for Sufficient Cause Interaction. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2012, 74, 223-244.	2.2	10
58	Stochastic counterfactuals and stochastic sufficient causes. Statistica Sinica, 2012, 22, 379-392.	0.3	28
59	Doubly robust instrumental variable regression. Statistica Sinica, 2012, 22, .	0.3	38
60	When to Initiate Combined Antiretroviral Therapy to Reduce Mortality and AIDS-Defining Illness in HIV-Infected Persons in Developed Countries. Annals of Internal Medicine, 2011, 154, 509.	3.9	205
61	Comparative Effectiveness of Dynamic Treatment Regimes: An Application of the Parametric G-Formula. Statistics in Biosciences, 2011, 3, 119-143.	1.2	112
62	Higher order inference on a treatment effect under low regularity conditions. Statistics and Probability Letters, 2011, 81, 821-828.	0.7	14
63	Effectiveness of Early Antiretroviral Therapy Initiation to Improve Survival among HIV-Infected Adults with Tuberculosis: A Retrospective Cohort Study. PLoS Medicine, 2011, 8, e1001029.	8.4	26
64	Transparent Parametrizations of Models for Potential Outcomes. , 2011, , 569-610.		26
65	Alternative Graphical Causal Models and the Identification of Direct Effects. , 2011, , .		48
66	The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. Aids, 2010, 24, 123-137.	2.2	360
67	Estimating Absolute Risks in the Presence of Nonadherence. Epidemiology, 2010, 21, 528-539.	2.7	57
68	When to Start Treatment? A Systematic Approach to the Comparison of Dynamic Regimes Using Observational Data. International Journal of Biostatistics, 2010, 6, Article 18.	0.7	160
69	Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part II: Proofs of Results. International Journal of Biostatistics, 2010, 6, Article 9.	0.7	35
70	Relation between three classes of structural models for the effect of a time-varying exposure on survival. Lifetime Data Analysis, 2010, 16, 71-84.	0.9	47
71	Signed Directed Acyclic Graphs for Causal Inference. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2010, 72, 111-127.	2.2	67
72	On doubly robust estimation in a semiparametric odds ratio model. Biometrika, 2010, 97, 171-180.	2.4	51

#	Article	IF	CITATIONS
73	Marginal Structural Models for Sufficient Cause Interactions. American Journal of Epidemiology, 2010, 171, 506-514.	3.4	41
74	Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content. International Journal of Biostatistics, 2010, 6, .	0.7	89
75	Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, Part I: main content. International Journal of Biostatistics, 2010, 6, Article 8.	0.7	86
76	Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. International Journal of Epidemiology, 2009, 38, 1599-1611.	1.9	235
77	Identifiability, exchangeability and confounding revisited. Epidemiologic Perspectives and Innovations, 2009, 6, 4.	7.0	110
78	Minimal sufficient causation and directed acyclic graphs. Annals of Statistics, 2009, 37, .	2.6	31
79	Early versus deferred antiretroviral therapy for HIV. New England Journal of Medicine, 2009, 361, 822-3; author reply 823-4.	27.0	9
80	Generation interval contraction and epidemic data analysis. Mathematical Biosciences, 2008, 213, 71-79.	1.9	92
81	Multiply Robust Inference for Statistical Interactions. Journal of the American Statistical Association, 2008, 103, 1693-1704.	3.1	56
82	Authors' Response, Part I: Observational Studies Analyzed Like Randomized Experiments. Epidemiology, 2008, 19, 789-792.	2.7	26
83	Empirical and counterfactual conditions for sufficient cause interactions. Biometrika, 2008, 95, 49-61.	2.4	96
84	Observational Studies Analyzed Like Randomized Experiments. Epidemiology, 2008, 19, 766-779.	2.7	668
85	Causal Directed Acyclic Graphs and the Direction of Unmeasured Confounding Bias. Epidemiology, 2008, 19, 720-728.	2.7	179
86	Directed Acyclic Graphs, Sufficient Causes, and the Properties of Conditioning on a Common Effect. American Journal of Epidemiology, 2007, 166, 1096-1104.	3.4	160
87	Four Types of Effect Modification. Epidemiology, 2007, 18, 561-568.	2.7	150
88	Determining the Effect of Highly Active Antiretroviral Therapy on Changes in Human Immunodeficiency Virus Type 1 RNA Viral Load using a Marginal Structural Left-censored Mean Model. American Journal of Epidemiology, 2007, 166, 219-227.	3.4	48
89	Invited Commentary: Effect Modification by Time-varying Covariates. American Journal of Epidemiology, 2007, 166, 994-1002.	3.4	40
90	The Identification of Synergism in the Sufficient-Component-Cause Framework. Epidemiology, 2007, 18, 329-339.	2.7	174

#	Article	IF	CITATIONS
91	Second look at the spread of epidemics on networks. Physical Review E, 2007, 76, 036113.	2.1	197
92	Network-based analysis of stochastic SIR epidemic models with random and proportionate mixing. Journal of Theoretical Biology, 2007, 249, 706-722.	1.7	52
93	Estimating causal effects from epidemiological data. Journal of Epidemiology and Community Health, 2006, 60, 578-586.	3.7	731
94	Pandemic Influenza: Risk of Multiple Introductions and the Need to Prepare for Them. PLoS Medicine, 2006, 3, e135.	8.4	37
95	Comparison of Dynamic Treatment Regimes via Inverse Probability Weighting. Basic and Clinical Pharmacology and Toxicology, 2006, 98, 237-242.	2.5	210
96	Instruments for Causal Inference. Epidemiology, 2006, 17, 360-372.	2.7	753
97	Results of Multivariable Logistic Regression, Propensity Matching, Propensity Adjustment, and Propensity-based Weighting under Conditions of Nonuniform Effect. American Journal of Epidemiology, 2006, 163, 262-270.	3.4	615
98	Doubly Robust Estimation in Missing Data and Causal Inference Models. Biometrics, 2005, 61, 962-973.	1.4	1,175
99	Discussion on "Statistical Issues Arising in the Women's Health Initiative". Biometrics, 2005, 61, 922-930.	1.4	28
100	Structural accelerated failure time models for survival analysis in studies with time-varying treatments. Pharmacoepidemiology and Drug Safety, 2005, 14, 477-491.	1.9	147
101	When Is Baseline Adjustment Useful in Analyses of Change? An Example with Education and Cognitive Change. American Journal of Epidemiology, 2005, 162, 267-278.	3.4	551
102	Marginal Structural Models for Estimating the Effect of Highly Active Antiretroviral Therapy Initiation on CD4 Cell Count. American Journal of Epidemiology, 2005, 162, 471-478.	3.4	106
103	Long-term effectiveness of potent antiretroviral therapy in preventing AIDS and death: a prospective cohort study. Lancet, The, 2005, 366, 378-384.	13.7	526
104	Estimation in Partially Linear Models With Missing Covariates. Journal of the American Statistical Association, 2004, 99, 357-367.	3.1	101
105	Twicing Kernels and a Small Bias Property of Semiparametric Estimators. Econometrica, 2004, 72, 947-962.	4.2	64
106	Transmissibility of 1918 pandemic influenza. Nature, 2004, 432, 904-906.	27.8	698
107	Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures. Statistics in Medicine, 2004, 23, 749-767.	1.6	153
108	A Structural Approach to Selection Bias. Epidemiology, 2004, 15, 615-625.	2.7	2,017

#	Article	IF	CITATIONS
109	Optimal Structural Nested Models for Optimal Sequential Decisions. Lecture Notes in Statistics, 2004, , 189-326.	0.2	306
110	General methodological considerations. Journal of Econometrics, 2003, 112, 89-106.	6.5	20
111	Transmission Dynamics and Control of Severe Acute Respiratory Syndrome. Science, 2003, 300, 1966-1970.	12.6	1,281
112	Uniform consistency in causal inference. Biometrika, 2003, 90, 491-515.	2.4	73
113	Incorporating prior beliefs about selection bias into the analysis of randomized trials with missing outcomes. Biostatistics, 2003, 4, 495-512.	1.5	63
114	Effect of Highly Active Antiretroviral Therapy on Time to Acquired Immunodeficiency Syndrome or Death using Marginal Structural Models. American Journal of Epidemiology, 2003, 158, 687-694.	3.4	234
115	Estimation of the Bivariate Survival Function with Generalized Bivariate Right Censored Data Structures. Handbook of Statistics, 2003, 23, 143-173.	0.6	1
116	Unified Methods for Censored Longitudinal Data and Causality. Springer Series in Statistics, 2003, , .	0.9	498
117	Locally Efficient Estimation of a Multivariate Survival Function in Longitudinal Studies. Journal of the American Statistical Association, 2002, 97, 494-507.	3.1	32
118	Analytic Methods for Estimating HIV-Treatment and Cofactor Effects. AIDS Prevention and Mental Health, 2002, , 213-288.	0.8	18
119	Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet, The, 2002, 359, 1173-1177.	13.7	974
120	Methotrexate treatment and mortality in rheumatoid arthritis. Lancet, The, 2002, 360, 1097-1098.	13.7	5
121	Commentary on ?Using inverse weighting and predictive inference to estimate the effects of time-varying treatments on the discrete-time hazard?. Statistics in Medicine, 2002, 21, 1663-1680.	1.6	13
122	Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures. Statistics in Medicine, 2002, 21, 1689-1709.	1.6	257
123	Marginal Structural Models to Estimate the Joint Causal Effect of Nonrandomized Treatments. Journal of the American Statistical Association, 2001, 96, 440-448.	3.1	373
124	Data, Design, and Background Knowledge in Etiologic Inference. Epidemiology, 2001, 12, 313-320.	2.7	272
125	On the validity of the TDT test in the presence of comorbidity and ascertainment bias. Genetic Epidemiology, 2001, 21, 326-336.	1.3	9
126	Inference in Randomized Studies with Informative Censoring and Discrete Time-to-Event Endpoints. Biometrics, 2001, 57, 404-413.	1.4	47

#	Article	IF	CITATIONS
127	Marginal Structural Models and Causal Inference in Epidemiology. Epidemiology, 2000, 11, 550-560.	2.7	4,017
128	Marginal Structural Models to Estimate the Causal Effect of Zidovudine on the Survival of HIV-Positive Men. Epidemiology, 2000, 11, 561-570.	2.7	1,387
129	Correcting for Noncompliance and Dependent Censoring in an AIDS Clinical Trial with Inverse Probability of Censoring Weighted (IPCW) Logâ€Rank Tests. Biometrics, 2000, 56, 779-788.	1.4	589
130	On the Semi-Parametric Efficiency of Logistic Regression under Case-Control Sampling. Bernoulli, 2000, 6, 447.	1.3	46
131	Asymptotic Distribution of <i>P</i> Values in Composite Null Models. Journal of the American Statistical Association, 2000, 95, 1143-1156.	3.1	131
132	Causal Inference Without Counterfactuals: Comment. Journal of the American Statistical Association, 2000, 95, 431.	3.1	41
133	On Profile Likelihood: Comment. Journal of the American Statistical Association, 2000, 95, 477.	3.1	44
134	Sensitivity Analysis for Selection bias and unmeasured Confounding in missing Data and Causal inference models. The IMA Volumes in Mathematics and Its Applications, 2000, , 1-94.	0.5	141
135	Marginal Structural Models versus Structural nested Models as Tools for Causal inference. The IMA Volumes in Mathematics and Its Applications, 2000, , 95-133.	0.5	217
136	Nonparametric locally efficient estimation of the Treatment Specific Survival distribution with right Censored Data and Covariates in Observational Studies. The IMA Volumes in Mathematics and Its Applications, 2000, , 135-177.	0.5	24
137	The Graft Versus Leukemia Effect after Bone Marrow Transplantation: A Case Study Using Structural Nested Failure Time Models. Biometrics, 1999, 55, 23-28.	1.4	31
138	Association, Causation, And Marginal Structural Models. SynthÈse, 1999, 121, 151-179.	1.1	303
139	Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models. Journal of the American Statistical Association, 1999, 94, 1096-1120.	3.1	757
140	Estimation of the Causal Effect of a Time-Varying Exposure on the Marginal Mean of a Repeated Binary Outcome. Journal of the American Statistical Association, 1999, 94, 687-700.	3.1	165
141	Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models: Rejoinder. Journal of the American Statistical Association, 1999, 94, 1135.	3.1	52
142	Presenting Statistical Uncertainty in Trends and Dose-Response Relations. American Journal of Epidemiology, 1999, 149, 1077-1086.	3.4	52
143	Causal Diagrams for Epidemiologic Research. Epidemiology, 1999, 10, 37-48.	2.7	2,911
144	Confounding and Collapsibility in Causal Inference. Statistical Science, 1999, 14, 29.	2.8	649

#	Article	IF	CITATIONS
145	Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models. Journal of the American Statistical Association, 1999, 94, 1096.	3.1	132
146	Estimation of the Causal Effect of a Time-Varying Exposure on the Marginal Mean of a Repeated Binary Outcome. Journal of the American Statistical Association, 1999, 94, 687.	3.1	34
147	Correction for non-compliance in equivalence trials. Statistics in Medicine, 1998, 17, 269-302.	1.6	133
148	Estimating the effect of zidovudine on Kaposi's sarcoma from observational data using a rank preserving structural failure-time model. , 1998, 17, 1073-1102.		29
149	Locally Efficient Estimation with Current Status Data and Time-Dependent Covariates. Journal of the American Statistical Association, 1998, 93, 693-701.	3.1	41
150	Semiparametric Regression for Repeated Outcomes with Nonignorable Nonresponse. Journal of the American Statistical Association, 1998, 93, 1321-1339.	3.1	335
151	Semiparametric Regression for Repeated Outcomes with Nonignorable Nonresponse. Journal of the American Statistical Association, 1998, 93, 1321.	3.1	68
152	Locally Efficient Estimation with Current Status Data and Time-Dependent Covariates. Journal of the American Statistical Association, 1998, 93, 693.	3.1	11
153	Semiparametric Efficiency and its Implication on the Design and Analysis of Group-Sequential Studies. Journal of the American Statistical Association, 1997, 92, 1342-1350.	3.1	146
154	Efficient estimation of regression parameters from multistage studies with validation of outcome and covariates. Journal of Statistical Planning and Inference, 1997, 65, 349-374.	0.6	11
155	NON-RESPONSE MODELS FOR THE ANALYSIS OF NON-MONOTONE NON-IGNORABLE MISSING DATA. , 1997, 16, 21-37.		56
156	NON-RESPONSE MODELS FOR THE ANALYSIS OF NON-MONOTONE IGNORABLE MISSING DATA. , 1997, 16, 39-56.		86
157	TOWARD A CURSE OF DIMENSIONALITY APPROPRIATE (CODA) ASYMPTOTIC THEORY FOR SEMI-PARAMETRIC MODELS. Statistics in Medicine, 1997, 16, 285-319.	1.6	293
158	Efficiency Comparisons in Multivariate Multiple Regression with Missing Outcomes. Journal of Multivariate Analysis, 1997, 61, 102-128.	1.0	3
159	Causal Inference from Complex Longitudinal Data. Lecture Notes in Statistics, 1997, , 69-117.	0.2	304
160	Coarsening at Random: Characterizations, Conjectures, Counter-Examples. Lecture Notes in Statistics, 1997, , 255-294.	0.2	116
161	Semiparametric Efficiency and Its Implication on the Design and Analysis of Group-Sequential Studies. Journal of the American Statistical Association, 1997, 92, 1342.	3.1	22
162	Identification of Causal Effects Using Instrumental Variables: Comment. Journal of the American Statistical Association, 1996, 91, 456.	3.1	73

#	Article	IF	CITATIONS
163	Birthweight as a risk factor for breast cancer. Lancet, The, 1996, 348, 1542-1546.	13.7	361
164	Locally Efficient Median Regression with Random Censoring and Surrogate Markers. , 1996, , 263-274.		12
165	Control Sampling Strategies for Case-Crossover Studies: An Assessment of Relative Efficiency. American Journal of Epidemiology, 1995, 142, 91-98.	3.4	314
166	Discussion of Causal Diagrams for Empirical Research by J. Pearl. Biometrika, 1995, 82, 695.	2.4	6
167	An analytic method for randomized trials with informative censoring: Part II. Lifetime Data Analysis, 1995, 1, 417-434.	0.9	13
168	An analytic method for randomized trials with informative censoring: Part 1. Lifetime Data Analysis, 1995, 1, 241-254.	0.9	55
169	Semiparametric Efficient Estimation of a Conditional Density with Missing or Mismeasured Covariates. Journal of the Royal Statistical Society Series B: Methodological, 1995, 57, 409-424.	0.7	26
170	Causal diagrams for empirical research. Biometrika, 1995, 82, 695-698.	2.4	18
171	Semiparametric regression estimation in the presence of dependent censoring. Biometrika, 1995, 82, 805-820.	2.4	138
172	Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data. Journal of the American Statistical Association, 1995, 90, 106-121.	3.1	1,183
173	Semiparametric Efficiency in Multivariate Regression Models with Missing Data. Journal of the American Statistical Association, 1995, 90, 122-129.	3.1	581
174	Analysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data. Journal of the American Statistical Association, 1995, 90, 106.	3.1	175
175	Semiparametric Efficiency in Multivariate Regression Models with Missing Data. Journal of the American Statistical Association, 1995, 90, 122.	3.1	58
176	Estimation of Regression Coefficients When Some Regressors are not Always Observed. Journal of the American Statistical Association, 1994, 89, 846-866.	3.1	1,811
177	Adjusting for Differential Rates of Prophylaxis Therapy for PCP in High-Versus Low-Dose AZT Treatment Arms in an AIDS Randomized Trial. Journal of the American Statistical Association, 1994, 89, 737-749.	3.1	154
178	Correcting for non-compliance in randomized trials using structural nested mean models. Communications in Statistics - Theory and Methods, 1994, 23, 2379-2412.	1.0	381
179	Adjusting for Differential Rates of Prophylaxis Therapy for PCP in High-Versus Low-Dose AZT Treatment Arms in an AIDS Randomized Trial. Journal of the American Statistical Association, 1994, 89, 737.	3.1	28
180	Estimation of Regression Coefficients When Some Regressors Are Not Always Observed. Journal of the American Statistical Association, 1994, 89, 846.	3.1	229

#	Article	IF	CITATIONS
181	Estimating the causal effect of smoking cessation in the presence of confounding factors using a rank preserving structural failure time model. Statistics in Medicine, 1993, 12, 1605-1628.	1.6	69
182	A method for the analysis of randomized trials with compliance information: An application to the multiple risk factor intervention trial. Contemporary Clinical Trials, 1993, 14, 79-97.	1.9	140
183	G-Estimation of the Effect of Prophylaxis Therapy for Pneumocystis carinii Pneumonia on the Survival of AIDS Patients. Epidemiology, 1992, 3, 319-336.	2.7	301
184	Identifiability and Exchangeability for Direct and Indirect Effects. Epidemiology, 1992, 3, 143-155.	2.7	1,359
185	Estimating Exposure Effects by Modelling the Expectation of Exposure Conditional on Confounders. Biometrics, 1992, 48, 479.	1.4	282
186	Recovery of Information and Adjustment for Dependent Censoring Using Surrogate Markers. , 1992, , 297-331.		368
187	Correcting for non-compliance in randomized trials using rank preserving structural failure time models. Communications in Statistics - Theory and Methods, 1991, 20, 2609-2631.	1.0	317
188	Estimability and estimation of excess and etiologic fractions. Statistics in Medicine, 1989, 8, 845-859.	1.6	114
189	RE: "CONFOUNDING CONFOUNDING― American Journal of Epidemiology, 1989, 129, 1086-1089.	3.4	13
190	Confidence intervals for causal parameters. Statistics in Medicine, 1988, 7, 773-785.	1.6	71
191	CONCEPTUAL PROBLEMS IN THE DEFINITION AND INTERPRETATION OF ATTRIBUTABLE FRACTIONS. American Journal of Epidemiology, 1988, 128, 1185-1197.	3.4	369
192	ANALYSIS OF CASE-CONTROL DATA DERIVED IN PART FROM PROXY RESPONDENTS. American Journal of Epidemiology, 1988, 127, 905-914.	3.4	76
193	ANALYSIS OF PROPORTIONATE MORTALITY DATA USING LOGISTIC REGRESSION MODELS. American Journal of Epidemiology, 1987, 125, 524-535.	3.4	18
194	THE ROLE OF MODEL SELECTION IN CAUSAL INFERENCE FROM NONEXPERIMENTAL DATA. American Journal of Epidemiology, 1986, 123, 392-402.	3.4	190
195	Identifiability, Exchangeability, and Epidemiological Confounding. International Journal of Epidemiology, 1986, 15, 413-419.	1.9	559
196	CONFOUNDING AND MISCLASSIFICATION. American Journal of Epidemiology, 1985, 122, 495-506.	3.4	222
197	Decision-Making under Uncertainty in the Setting of Environmental Health Regulations. Journal of Public Health Policy, 1985, 6, 322.	2.0	6