
F Moukalled

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10718381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical simulation of bread baking in a convection oven. Applied Thermal Engineering, 2021, 184, 116252.	6.0	12
2	An implicit implementation of the characteristic boundary condition in a fully coupled pressure-based flow solver. Numerical Heat Transfer, Part B: Fundamentals, 2020, 78, 330-347.	0.9	1
3	The characteristic boundary condition in pressure-based methods. Numerical Heat Transfer, Part B: Fundamentals, 2019, 76, 43-59.	0.9	6
4	Implicit boundary conditions for coupled solvers. Computers and Fluids, 2018, 168, 54-66.	2.5	11
5	Fully implicit method for coupling multiblock meshes with nonmatching interface grids. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 109-132.	0.9	7
6	General fully implicit discretization of the diffusion term for the finite volume method. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 506-532.	0.9	5
7	A fully coupled OpenFOAM® solver for transient incompressible turbulent flows in ALE formulation. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 313-326.	0.9	12
8	Optimum decomposition of the anisotropic diffusion term. Numerical Heat Transfer, Part B: Fundamentals, 2017, 72, 191-210.	0.9	2
9	Buoyancy-induced flow, heat, and mass transfer in a porous annulus. Numerical Heat Transfer; Part A: Applications, 2017, 72, 107-125.	2.1	3
10	Numerical simulation of solar wind energy towers. Numerical Heat Transfer; Part A: Applications, 2017, 72, 780-805.	2.1	0
11	An OpenFOAM pressure-based coupled CFD solver for turbulent and compressible flows in turbomachinery applications. Numerical Heat Transfer, Part B: Fundamentals, 2016, 69, 413-431.	0.9	14
12	Buoyancy-induced flow and heat transfer in a porous annulus between concentric horizontal circular and square cylinders. Numerical Heat Transfer; Part A: Applications, 2016, 69, 1029-1050.	2.1	10
13	Temporal Discretization: The Transient Term. Fluid Mechanics and Its Applications, 2016, , 489-533.	0.2	2
14	A Coupled Pressure-Based Finite-Volume Solver for Incompressible Two-Phase Flow. Numerical Heat Transfer, Part B: Fundamentals, 2015, 67, 47-74.	0.9	23
15	A Fully Coupled Navier-Stokes Solver for Fluid Flow at All Speeds. Numerical Heat Transfer, Part B: Fundamentals, 2014, 65, 410-444.	0.9	41
16	Double Diffusive Natural Convection in a Porous Rhombic Annulus. Numerical Heat Transfer; Part A: Applications, 2013, 64, 378-399.	2.1	18
17	Transient Schemes for Capturing Interfaces of Free-Surface Flows. Numerical Heat Transfer, Part B: Fundamentals, 2012, 61, 171-203.	0.9	13
18	A New Numerical Approach for Predicting the Two-Phase Flow of Refrigerants during Evaporation and Condensation. Numerical Heat Transfer, Part B: Fundamentals, 2012, 62, 341-369.	0.9	7

F MOUKALLED

#	Article	IF	CITATIONS
19	A Coupled Finite Volume Solver for Compressible Flows. , 2011, , .		Ο
20	The use of CFD for predicting and optimizing the performance of air conditioning equipment. International Journal of Heat and Mass Transfer, 2011, 54, 549-563.	4.8	32
21	Performance comparison of the NWF and DC methods for implementing High-Resolution schemes in a fully coupled incompressible flow solver. Applied Mathematics and Computation, 2011, 217, 5041-5054.	2.2	19
22	Fully Implicit Coupling for Non-Matching Grids. , 2010, , .		3
23	Numerical Simulation of Free Convection in a Porous Annulus of Rhombic Cross Section. , 2010, , .		Ο
24	Natural Convection Heat Transfer in a Porous Rhombic Annulus. Numerical Heat Transfer; Part A: Applications, 2010, 58, 101-124.	2.1	33
25	Unstructured Adaptive Mesh Refinement and Coarsening for Fluid Flow at All Speeds Using a Coupled Solver. , 2009, , .		Ο
26	A coupled finite volume solver for the solution of incompressible flows on unstructured grids. Journal of Computational Physics, 2009, 228, 180-201.	3.8	111
27	A Compact Procedure for Discretization of the Anisotropic Diffusion Operator. Numerical Heat Transfer, Part B: Fundamentals, 2009, 55, 339-360.	0.9	13
28	Natural-Convection Heat Transfer in Channels with Isothermally Heated Convex Surfaces. Numerical Heat Transfer; Part A: Applications, 2008, 53, 1176-1194.	2.1	17
29	Mixing and evaporation of liquid droplets injected into an air stream flowing at all speeds. Physics of Fluids, 2008, 20, .	4.0	16
30	Numerical Prediction of Dispersion and Evaporation of Liquid Sprays in Gases Flowing at all Speeds. Numerical Heat Transfer, Part B: Fundamentals, 2008, 54, 185-212.	0.9	3
31	A Coupled Incompressible Flow Solver on Structured Grids. Numerical Heat Transfer, Part B: Fundamentals, 2007, 52, 353-371.	0.9	39
32	Buoyancy-Induced Heat Transfer in a Trapezoidal Enclosure with Offset Baffles. Numerical Heat Transfer; Part A: Applications, 2007, 52, 337-355.	2.1	12
33	Numerical and Experimental Investigation of Thermal Signatures of Buried Landmines in Dry Soil. Journal of Heat Transfer, 2006, 128, 484-494.	2.1	5
34	Convective Schemes for Capturing Interfaces of Free-Surface Flows on Unstructured Grids. Numerical Heat Transfer, Part B: Fundamentals, 2006, 49, 19-42.	0.9	102
35	Heat and Mass Transfer in Moist Soil, Part I. Formulation and Testing. Numerical Heat Transfer, Part B: Fundamentals, 2006, 49, 467-486.	0.9	12
36	Heat and Mass Transfer in Moist Soil, Part II. Application to Predicting Thermal Signatures of Buried Landmines. Numerical Heat Transfer, Part B: Fundamentals, 2006, 49, 487-512.	0.9	7

F MOUKALLED

#	Article	IF	CITATIONS
37	PRESSURE-BASED ALGORITHMS FOR MULTIFLUID FLOW AT ALL SPEEDS—PART I: MASS CONSERVATION FORMULATION. Numerical Heat Transfer, Part B: Fundamentals, 2004, 45, 495-522.	0.9	18
38	THE PERFORMANCE OF GEOMETRICCONSERVATION-BASED ALGORITHMS FORINCOMPRESSIBLE MULTIFLUID FLOW. Numerical Heat Transfer, Part B: Fundamentals, 2004, 45, 343-368.	0.9	8
39	PRESSURE-BASED ALGORITHMS FOR MULTIFLUID FLOW AT ALL SPEEDS—PART II: GEOMETRIC CONSERVATION FORMULATION. Numerical Heat Transfer, Part B: Fundamentals, 2004, 45, 523-540.	0.9	13
40	Natural Convection in a Trapezoidal Enclosure Heated from the Side with a Baffle Mounted on Its Upper Inclined Surface. Heat Transfer Engineering, 2004, 25, 80-93.	1.9	27
41	A COMPARATIVE ASSESSMENT WITHIN A MULTIGRID ENVIRONMENT OF SEGREGATED PRESSURE-BASED ALGORITHMS FOR FLUID FLOW AT ALL SPEEDS. Numerical Heat Transfer, Part B: Fundamentals, 2004, 45, 49-74.	0.9	17
42	Evolution of power and entropy in a temperature gap system with electric and thermoelectric influences. Energy Conversion and Management, 2003, 44, 647-665.	9.2	8
43	A robust multi-grid pressure-based algorithm for multi-fluid flow at all speeds. International Journal for Numerical Methods in Fluids, 2003, 41, 1221-1251.	1.6	13
44	A pressure-based algorithm for multi-phase flow at all speeds. Journal of Computational Physics, 2003, 190, 550-571.	3.8	37
45	TVD schemes for unstructured grids. International Journal of Heat and Mass Transfer, 2003, 46, 599-611.	4.8	187
46	NATURAL CONVECTION IN A PARTITIONED TRAPEZOIDAL CAVITY HEATED FROM THE SIDE. Numerical Heat Transfer; Part A: Applications, 2003, 43, 543-563.	2.1	48
47	A COMPARATIVE ASSESSMENT OF THE PERFORMANCE OF MASS CONSERVATION-BASED ALGORITHMS FOR INCOMPRESSIBLE MULTIPHASE FLOWS. Numerical Heat Transfer, Part B: Fundamentals, 2002, 42, 259-283.	0.9	13
48	Effect of heat leak on cascaded heat engines. Energy Conversion and Management, 2002, 43, 2067-2083.	9.2	5
49	A High-Resolution Pressure-Based Algorithm for Fluid Flow at All Speeds. Journal of Computational Physics, 2001, 168, 101-130.	3.8	77
50	Natural Convection in a Trapezoidal Enclosure with Offset Baffles. Journal of Thermophysics and Heat Transfer, 2001, 15, 212-218.	1.6	29
51	On entropy generation in thermoelectric devices. Energy Conversion and Management, 2000, 41, 891-914.	9.2	44
52	NEW FAMILY OF ADAPTIVE VERY HIGH RESOLUTION SCHEMES. Numerical Heat Transfer, Part B: Fundamentals, 1998, 34, 215-239.	0.9	8
53	AN EFFICIENT VERY-HIGH-RESOLUTION SCHEME BASED ON AN ADAPTIVE-SCHEME STRATEGY. Numerical Heat Transfer, Part B: Fundamentals, 1998, 34, 191-213.	0.9	13
54	BUOYANCY-INDUCED HEAT TRANSFER IN PARTIALLY DIVIDED TRAPEZOIDAL CAVITIES. Numerical Heat Transfer; Part A: Applications, 1997, 32, 787-810.	2.1	27

F MOUKALLED

#	Article	IF	CITATIONS
55	NEW BOUNDED SKEW CENTRAL DIFFERENCE SCHEME, PART II: APPLICATION TO NATURAL CONVECTION IN AN ECCENTRIC ANNULUS. Numerical Heat Transfer, Part B: Fundamentals, 1997, 31, 111-133.	0.9	11
56	A NEW FAMILY OF STREAMLINE-BASED VERY-HIGH-RESOLUTION SCHEMES. Numerical Heat Transfer, Part B: Fundamentals, 1997, 32, 299-320.	0.9	17
57	NEW BOUNDED SKEW CENTRAL DIFFERENCE SCHEME, PART I: FORMULATION AND TESTING. Numerical Heat Transfer, Part B: Fundamentals, 1997, 31, 91-110.	0.9	15
58	THE NORMALIZED WEIGHTING FACTOR METHOD: A NOVEL TECHNIQUE FOR ACCELERATING THE CONVERGENCE OF HIGH-RESOLUTION CONVECTIVE SCHEMES. Numerical Heat Transfer, Part B: Fundamentals, 1996, 30, 217-237.	0.9	31
59	Natural convection in the annulus between concentric horizontal circular and square cylinders. Journal of Thermophysics and Heat Transfer, 1996, 10, 524-531.	1.6	230
60	A universal model for studying the performance of Carnot-like engines at maximum power conditions. International Journal of Energy Research, 1996, 20, 203-214.	4.5	9
61	A new approach for building bounded skew-upwind schemes. Computer Methods in Applied Mechanics and Engineering, 1996, 129, 221-233.	6.6	11
62	The efficiency of endoreversible heat engines with heat leak. International Journal of Energy Research, 1995, 19, 377-389.	4.5	20
63	TRANSIENT THERMAL PERFORMANCE OF AXIALLY AND RADIALLY DILUTED NUCLEAR FUEL CELLS. Numerical Heat Transfer; Part A: Applications, 1995, 28, 231-252.	2.1	1
64	TRANSIENT THERMAL PERFORMANCE OF A RADIALLY DILUTED AND CENTRALLY COOLED NUCLEAR FUEL CELL. Numerical Heat Transfer; Part A: Applications, 1995, 28, 687-705.	2.1	1
65	INFLUENCE OF WALL CONDUCTION ON MIXED CONVECTION HEAT TRANSFER IN EXTERNALLY FINNED PIPES. Numerical Heat Transfer; Part A: Applications, 1995, 28, 157-173.	2.1	5
66	LAMINAR NATURAL CONVECTION HEAT TRANSFER IN AN ECCENTRIC RHOMBIC ANNULUS. Numerical Heat Transfer; Part A: Applications, 1994, 26, 551-568.	2.1	24
67	The effect of planet thermal conductance on conversion of solar energy into wind energy. Renewable Energy, 1994, 4, 53-58.	8.9	5
68	Laminar Natural Convection in a Horizontal Rhombic Annulus. Numerical Heat Transfer; Part A: Applications, 1993, 24, 89-107.	2.1	28
69	TURBULENT CONVECTION HEAT TRANSFER IN LONGITUDINALLY CONDUCTING, EXTERNALLY FINNED PIPES. Numerical Heat Transfer; Part A: Applications, 1992, 21, 401-421.	2.1	8