Valerie J Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10715328/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular stress responses to chronic heat shock and shell damage in temperate Mya truncata. Cell Stress and Chaperones, 2018, 23, 1003-1017.	1.2	19
2	Unusual tissue distribution of carcinin, an antibacterial crustin, in the crab, Carcinus maenas, reveals its multi-functionality. Developmental and Comparative Immunology, 2017, 76, 274-284.	1.0	26
3	Hematopoiesis and Hemocytes in Pancrustacean and Molluscan Models. , 2016, , 1-28.		5
4	Antimicrobial proteins: From old proteins, new tricks. Molecular Immunology, 2015, 68, 383-398.	1.0	72
5	Disk Diffusion Assay to Assess the Antimicrobial Activity of Marine Algal Extracts. Methods in Molecular Biology, 2015, 1308, 403-410.	0.4	3
6	Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nature Communications, 2014, 5, 4627.	5.8	133
7	Isolation and in vitro characterisation of prohaemocytes from the spider crab, Hyas araneus (L.). Developmental and Comparative Immunology, 2011, 35, 537-544.	1.0	24
8	Phylogeny of whey acidic protein (WAP) four-disulfide core proteins and their role in lower vertebrates and invertebrates. Biochemical Society Transactions, 2011, 39, 1403-1408.	1.6	61
9	Differential antibacterial activities of fusiform and oval morphotypes of <i>Phaeodactylum tricornutum</i> (Bacillariophyceae). Journal of the Marine Biological Association of the United Kingdom, 2010, 90, 769-774.	0.4	43
10	Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 2010, 85, 1629-1642.	1.7	1,028
11	Conventional and Unconventional Antimicrobials from Fish, Marine Invertebrates and Micro-algae. Marine Drugs, 2010, 8, 1213-1262.	2.2	200
12	Expression of antimicrobial peptides from Hyas araneus haemocytes following bacterial challenge in vitro. Developmental and Comparative Immunology, 2010, 34, 618-624.	1.0	24
13	A Fatty Acid from the Diatom Phaeodactylum tricornutum is Antibacterial Against Diverse Bacteria Including Multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 2009, 11, 45-52.	1.1	220
14	Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Applied Microbiology and Biotechnology, 2008, 81, 755-764.	1.7	127
15	Crustins: Enigmatic WAP domain-containing antibacterial proteins from crustaceans. Developmental and Comparative Immunology, 2008, 32, 758-772.	1.0	240
16	Crustin expression following bacterial injection and temperature change in the shore crab, Carcinus maenas. Developmental and Comparative Immunology, 2008, 32, 1027-1033.	1.0	38
17	Gene characterisation, isoforms and recombinant expression of carcinin, an antibacterial protein from the shore crab, Carcinus maenas. Molecular Immunology, 2007, 44, 943-949.	1.0	59
18	Adaptive immunity in invertebrates: A straw house without a mechanistic foundation. BioEssays, 2007, 29, 1138-1146.	1.2	105

VALERIE J SMITH

#	Article	IF	CITATIONS
19	Identification and real-time PCR quantification of Phocine distemper virus from two colonies of Scottish grey seals in 2002. Journal of General Virology, 2005, 86, 2563-2567.	1.3	25
20	Real-time PCR quantification of the in vitro effects of crustacean immunostimulants on gene expression in lobster (Homarus gammarus) granular haemocytes. Developmental and Comparative Immunology, 2005, 29, 33-42.	1.0	48
21	Apolipoproteins A-I and A-II are potentially important effectors of innate immunity in the teleost fish Cyprinus carpio. FEBS Journal, 2004, 271, 2984-2990.	0.2	109
22	In vitro cytotoxicity of crustacean immunostimulants for lobster (Homarus gammarus) granulocytes demonstrated using the neutral red uptake assay. Fish and Shellfish Immunology, 2004, 17, 65-73.	1.6	20
23	Partial purification of antibacterial proteinaceous factors from erythrocytes of Oncorhynchus mykiss. Fish and Shellfish Immunology, 2004, 16, 1-9.	1.6	25
24	Isolation and characterisation of oncorhyncin II, a histone H1-derived antimicrobial peptide from skin secretions of rainbow trout, Oncorhynchus mykiss. Developmental and Comparative Immunology, 2004, 28, 127-138.	1.0	146
25	Oncorhyncin III: a potent antimicrobial peptide derived from the non-histone chromosomal protein H6 of rainbow trout, Oncorhynchus mykiss. Biochemical Journal, 2003, 373, 621-628.	1.7	71
26	Immunostimulation in crustaceans: does it really protect against infection?. Fish and Shellfish Immunology, 2003, 15, 71-90.	1.6	286
27	Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochemical Journal, 2002, 368, 611-620.	1.7	164
28	A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochemical and Biophysical Research Communications, 2002, 296, 167-171.	1.0	78
29	Antimicrobial Proteins in Crustaceans. Advances in Experimental Medicine and Biology, 2001, 484, 95-112.	0.8	37
30	Antibacterial proteins in rainbow trout, Oncorhynchus mykiss. Fish and Shellfish Immunology, 2000, 10, 243-260.	1.6	78
31	Purification and characterization of a cysteine-rich 11.5-kDa antibacterial protein from the granular haemocytes of the shore crab, Carcinus maenas. FEBS Journal, 1999, 264, 350-357.	0.2	222
32	Construction of a gene probe for detection of P virus (Reoviridae) in a marine decapod. Journal of Virological Methods, 1999, 81, 183-192.	1.0	12
33	Primary culture of the hyaline haemocytes from marine decapods. Fish and Shellfish Immunology, 1999, 9, 181-194.	1.6	37
34	Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Research, 1997, 31, 1701-1707.	5.3	99
35	Purification and Characterization of a Proline-Rich Antibacterial Peptide, with Sequence Similarity to Bactenecin-7, from the Haemocytes of the Shore Crab, Carcinus Maenas. FEBS Journal, 1996, 240, 532-539. 	0.2	170
36	Antibacterial activity in the blood cells of the solitary ascidian,Ciona intestinalis, in vitro. The Journal of Experimental Zoology, 1995, 273, 434-444.	1.4	13

VALERIE J SMITH

#	Article	IF	CITATIONS
37	Comparison of antibacterial activity in the hemocytes of different crustacean species. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 110, 39-45.	0.7	49
38	Wastewater nutrient removal by marine microalgae cultured under ambient conditions in mini-ponds. Water Science and Technology, 1995, 31, 151-160.	1.2	25
39	Proliferation of undifferentiated blood cells from the solitary ascidian, ciona intestinalis in vitro. Developmental and Comparative Immunology, 1995, 19, 377-387.	1.0	17
40	Disturbance of host defence capability in the common shrimp, Crangon crangon, by exposure to harbour dredge spoils. Aquatic Toxicology, 1995, 32, 43-58.	1.9	72
41	Antimicrobial factors in solitary ascidians. Fish and Shellfish Immunology, 1995, 5, 645-658.	1.6	15
42	Variation of antibacterial activity in the haemocytes of the shore crab, <i>Carcinus maenas</i> , with temperature. Journal of the Marine Biological Association of the United Kingdom, 1994, 74, 979-982.	0.4	12
43	Mechanism of cytotoxic activity by hemocytes of the solitary ascidian,Ciona intestinalis. The Journal of Experimental Zoology, 1994, 270, 335-342.	1.4	18
44	A Comparative Study of the Respiratory Burst Produced by the Phagocytic Cells of Marine Invertebrates. Annals of the New York Academy of Sciences, 1994, 712, 330-331.	1.8	7
45	In vitro spontaneous cytotoxic activity against mammalian target cells by the hemocytes of the solitary ascidian,Ciona intestinalis. The Journal of Experimental Zoology, 1993, 267, 616-623.	1.4	49
46	LPS-sensitive protease activity in the blood cells of the solitary ascidian, Ciona intestinalis (L). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1993, 106, 505-512.	0.2	2
47	In vitro phenoloxidase activity in the blood of Ciona intestinalis and other ascidians. Developmental and Comparative Immunology, 1993, 17, 97-108.	1.0	50
48	In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Developmental and Comparative Immunology, 1993, 17, 211-219.	1.0	181
49	Antibacterial activity in the haemocytes of the shore crab, <i>Carcinus maenas</i> . Journal of the Marine Biological Association of the United Kingdom, 1992, 72, 529-542.	0.4	63
50	Non-cellular immunity in crustaceans. Fish and Shellfish Immunology, 1992, 2, 1-31.	1.6	138
51	Differential haemotoxic effect of PCB congeners in the common shrimp, Crangon crangon. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1992, 101, 641-649.	0.2	46
52	A comparison of phenoloxidase activity in the blood of marine invertebrates. Developmental and Comparative Immunology, 1991, 15, 251-261.	1.0	217
53	Invertebrate immunology: Phylogenetic, ecotoxicological and biomedical implications. Comparative Haematology International, 1991, 1, 61-76.	0.5	67
54	Purification and characterization of a prophenoloxidase activating enzyme from crayfish blood cells. Insect Biochemistry, 1990, 20, 709-718.	1.8	83

VALERIE J SMITH

#	Article	IF	CITATIONS
55	l² 1,3-Glucan induced cellular defence reactions in the shore crab, Carcinus maenas. Comparative Biochemistry and Physiology A, Comparative Physiology, 1984, 77, 635-639.	0.7	97
56	Separation of the haemocyte populations of CarcinusMaenas and other marine decapods, and prophenoloxidase distribution. Developmental and Comparative Immunology, 1983, 7, 229-239.	1.0	591
57	β-I, 3 GLUCAN ACTIVATION OF CRUSTACEAN HEMOCYTESIN VITROANDIN VIVO. Biological Bulletin, 1983, 164, 299-314.	0.7	182
58	Pathological changes in the nephrocytes of the shore crab, Carcinus maenas, following injection of bacteria. Journal of Invertebrate Pathology, 1981, 38, 113-121.	1.5	25
59	Host Defence Reactions of the Shore Crab, Carcinus Maenas (L.): Clearance and Distribution of Injected Test Particles. Journal of the Marine Biological Association of the United Kingdom, 1980, 60, 89-102.	0.4	72
60	Host Defence Reactions of the Shore Crab, <i>Carcinus Maenas</i> (L.), <i>in Vitro</i> . Journal of the Marine Biological Association of the United Kingdom, 1978, 58, 367-379.	0.4	98