
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1071457/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene photonics and optoelectronics. Nature Photonics, 2010, 4, 611-622.	15.6	6,719
2	Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347, 1246501.	6.0	2,925
3	Electronics based on two-dimensional materials. Nature Nanotechnology, 2014, 9, 768-779.	15.6	2,505
4	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
5	Graphene Mode-Locked Ultrafast Laser. ACS Nano, 2010, 4, 803-810.	7.3	1,795
6	Energy storage: The future enabled by nanomaterials. Science, 2019, 366, .	6.0	1,119
7	Inkjet-Printed Graphene Electronics. ACS Nano, 2012, 6, 2992-3006.	7.3	1,018
8	Production and processing of graphene and 2d crystals. Materials Today, 2012, 15, 564-589.	8.3	866
9	Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 2012, 100, 1486-1517.	16.4	822
10	Nanotube–Polymer Composites for Ultrafast Photonics. Advanced Materials, 2009, 21, 3874-3899.	11.1	778
11	Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society, 2016, 138, 1010-1016.	6.6	747
12	An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 2014, 14, 4901-4906.	4.5	402
13	2Dâ€Crystalâ€Based Functional Inks. Advanced Materials, 2016, 28, 6136-6166.	11.1	371
14	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
15	Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotechnology, 2018, 13, 183-191.	15.6	319
16	Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3244-3294.	18.7	304
17	Nonvolatile Memories Based on Graphene and Related 2D Materials. Advanced Materials, 2019, 31, e1806663.	11.1	230
18	Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano, 2016, 10, 615-623.	7.3	208

#	Article	IF	CITATIONS
19	Fewâ€Layer MoS ₂ Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600920.	10.2	207
20	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201
21	Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm ² Active Area. ACS Energy Letters, 2017, 2, 279-287.	8.8	196
22	Brownian Motion of Graphene. ACS Nano, 2010, 4, 7515-7523.	7.3	194
23	Solution processing of graphene, topological insulators and other 2d crystals for ultrafast photonics. Optical Materials Express, 2014, 4, 63.	1.6	187
24	Ink-jet printing of graphene for flexible electronics: An environmentally-friendly approach. Solid State Communications, 2015, 224, 53-63.	0.9	187
25	Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nature Communications, 2017, 8, 14643.	5.8	179
26	Scalable Production of Graphene Inks via Wetâ€Jet Milling Exfoliation for Screenâ€Printed Micro‣upercapacitors. Advanced Functional Materials, 2019, 29, 1807659.	7.8	174
27	Solutionâ€phase exfoliation of graphite for ultrafast photonics. Physica Status Solidi (B): Basic Research, 2010, 247, 2953-2957.	0.7	170
28	Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 2016, 22, 349-360.	8.2	166
29	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
30	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	10.2	152
31	Generalized One-Pot Synthesis of Copper Sulfide, Selenide-Sulfide, and Telluride-Sulfide Nanoparticles. Chemistry of Materials, 2014, 26, 1442-1449.	3.2	150
32	Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. Journal of Physical Chemistry C, 2010, 114, 17267-17285.	1.5	144
33	High-yield production of 2D crystals by wet-jet milling. Materials Horizons, 2018, 5, 890-904.	6.4	139
34	Molar Extinction Coefficient of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 14682-14686.	1.5	132
35	Graphene-based large area dye-sensitized solar cell modules. Nanoscale, 2016, 8, 5368-5378.	2.8	132
36	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters, 2019, 4, 1862-1871.	8.8	125

#	Article	IF	CITATIONS
37	Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule, 2020, 4, 865-881.	11.7	125
38	Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer. Advanced Energy Materials, 2018, 8, 1702287.	10.2	121
39	Carbon Nanotube-Supported MoSe ₂ Holey Flake:Mo ₂ C Ball Hybrids for Bifunctional pH-Universal Water Splitting. ACS Nano, 2019, 13, 3162-3176.	7.3	120
40	Femtonewton Force Sensing with Optically Trapped Nanotubes. Nano Letters, 2008, 8, 3211-3216.	4.5	118
41	Rotation Detection in Light-Driven Nanorotors. ACS Nano, 2009, 3, 3077-3084.	7.3	112
42	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
43	Re-radiation Enhancement in Polarized Surface-Enhanced Resonant Raman Scattering of Randomly Oriented Molecules on Self-Organized Gold Nanowires. ACS Nano, 2011, 5, 5945-5956.	7.3	94
44	Hollow and Porous Nickel Cobalt Perselenide Nanostructured Microparticles for Enhanced Electrocatalytic Oxygen Evolution. Chemistry of Materials, 2017, 29, 7032-7041.	3.2	93
45	Solution-Processed Hybrid Graphene Flake/2H-MoS ₂ Quantum Dot Heterostructures for Efficient Electrochemical Hydrogen Evolution. Chemistry of Materials, 2017, 29, 5782-5786.	3.2	93
46	Exfoliation of Few-Layer Black Phosphorus in Low-Boiling-Point Solvents and Its Application in Li-Ion Batteries. Chemistry of Materials, 2018, 30, 506-516.	3.2	93
47	Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, 48, 5033-5139.	18.7	93
48	Optical trapping of nanotubes with cylindrical vector beams. Optics Letters, 2012, 37, 3381.	1.7	91
49	Size-Tuning of WSe ₂ Flakes for High Efficiency Inverted Organic Solar Cells. ACS Nano, 2017, 11, 3517-3531.	7.3	90
50	Liquidâ€Phase Exfoliated Indium–Selenide Flakes and Their Application in Hydrogen Evolution Reaction. Small, 2018, 14, e1800749.	5.2	90
51	WS ₂ –Graphite Dual-Ion Batteries. Nano Letters, 2018, 18, 7155-7164.	4.5	88
52	Black phosphorus polycarbonate polymer composite for pulsed fibre lasers. Applied Materials Today, 2016, 4, 17-23.	2.3	87
53	Boosting Perovskite Solar Cells Performance and Stability through Doping a Polyâ€3(hexylthiophene) Hole Transporting Material with Organic Functionalized Carbon Nanostructures. Advanced Functional Materials, 2016, 26, 7443-7453.	7.8	86
54	Grapheneâ€Based Electron Transport Layers in Perovskite Solar Cells: A Stepâ€Up for an Efficient Carrier Collection. Advanced Energy Materials, 2017, 7, 1701349.	10.2	85

#	Article	IF	CITATIONS
55	Sorting Nanoparticles by Centrifugal Fields in Clean Media. Journal of Physical Chemistry C, 2013, 117, 13217-13229.	1.5	83
56	Carbonâ€Based Photocathode Materials for Solar Hydrogen Production. Advanced Materials, 2019, 31, e1801446.	11.1	83
57	Solutionâ€Processed GaSe Nanoflakeâ€Based Films for Photoelectrochemical Water Splitting and Photoelectrochemicalâ€Type Photodetectors. Advanced Functional Materials, 2020, 30, 1909572.	7.8	81
58	Binder-free graphene as an advanced anode for lithium batteries. Journal of Materials Chemistry A, 2016, 4, 6886-6895.	5.2	79
59	Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene. Nano Letters, 2010, 10, 1589-1594.	4.5	77
60	Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA. Optics Express, 2013, 21, 23261.	1.7	74
61	Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 2019, 19, 684-691.	4.5	72
62	Solution blending preparation of polycarbonate/graphene composite: boosting the mechanical and electrical properties. RSC Advances, 2016, 6, 97931-97940.	1.7	71
63	Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Solar Energy Materials and Solar Cells, 2018, 183, 1-7.	3.0	68
64	An anisotropic layer-by-layer carbon nanotube/boron nitride/rubber composite and its application in electromagnetic shielding. Nanoscale, 2020, 12, 7782-7791.	2.8	68
65	Functionalized Graphene as an Electron ascade Acceptor for Airâ€Processed Organic Ternary Solar Cells. Advanced Functional Materials, 2015, 25, 3870-3880.	7.8	67
66	Dopedâ€MoSe ₂ Nanoflakes/3d Metal Oxide–Hydr(Oxy)Oxides Hybrid Catalysts for pHâ€Universal Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801764.	10.2	67
67	Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 2014, 8, 4836-4847.	7.3	66
68	Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nature Energy, 2022, 7, 597-607.	19.8	66
69	Influence of Chloride Ions on the Synthesis of Colloidal Branched CdSe/CdS Nanocrystals by Seeded Growth. ACS Nano, 2012, 6, 11088-11096.	7.3	64
70	Scalable spray-coated graphene-based electrodes for high-power electrochemical double-layer capacitors operating over a wide range of temperature. Energy Storage Materials, 2021, 34, 1-11.	9.5	61
71	Thermal Stability and Anisotropic Sublimation of Two-Dimensional Colloidal Bi ₂ Te ₃ and Bi ₂ Se ₃ Nanocrystals. Nano Letters, 2016, 16, 4217-4223.	4.5	60
72	TaS ₂ , TaSe ₂ , and Their Heterogeneous Films as Catalysts for the Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 3313-3325.	5.5	60

#	Article	IF	CITATIONS
73	Spider silk reinforced by graphene or carbon nanotubes. 2D Materials, 2017, 4, 031013.	2.0	57
74	Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 48598-48613.	4.0	56
75	Few-layer MoS ₂ flakes as a hole-selective layer for solution-processed hybrid organic hydrogen-evolving photocathodes. Journal of Materials Chemistry A, 2017, 5, 4384-4396.	5.2	55
76	Foldable Conductive Cellulose Fiber Networks Modified by Graphene Nanoplateletâ€Bioâ€Based Composites. Advanced Electronic Materials, 2015, 1, 1500224.	2.6	54
77	Few-layer graphene improves silicon performance in Li-ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 19306-19315.	5.2	54
78	Etched Colloidal LiFePO4 Nanoplatelets toward High-Rate Capable Li-Ion Battery Electrodes. Nano Letters, 2014, 14, 6828-6835.	4.5	53
79	High surface area graphene foams by chemical vapor deposition. 2D Materials, 2016, 3, 045013.	2.0	53
80	Enhanced performance of polymer:fullerene bulk heterojunction solar cells upon graphene addition. Applied Physics Letters, 2014, 105, .	1.5	52
81	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. ACS Energy Letters, 2020, 5, 642-649.	8.8	52
82	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	7.3	51
83	In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries. Nano Energy, 2018, 51, 656-667.	8.2	50
84	Niobium disulphide (NbS ₂)-based (heterogeneous) electrocatalysts for an efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 25593-25608.	5.2	50
85	Multiwall Nanotubes, Multilayers, and Hybrid Nanostructures: New Frontiers for Technology and Raman Spectroscopy. ACS Nano, 2013, 7, 1838-1844.	7.3	49
86	Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells. Dalton Transactions, 2010, 39, 2903.	1.6	48
87	Electrically Conducting and Mechanically Strong Graphene–Polylactic Acid Composites for 3D Printing. ACS Applied Materials & Interfaces, 2019, 11, 11841-11848.	4.0	46
88	Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotubeâ^'Polymer Composites. Journal of Physical Chemistry C, 2008, 112, 20227-20232.	1.5	45
89	Effect of graphene nano-platelet morphology on the elastic modulus of soft and hard biopolymers. Carbon, 2016, 109, 331-339.	5.4	44
90	Toward Pt-Free Anion-Exchange Membrane Fuel Cells: Fe–Sn Carbon Nitride–Graphene Core–Shell Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2018, 30, 2651-2659.	3.2	44

#	Article	IF	CITATIONS
91	Efficient charge transfer in solution-processed PbS quantum dot–reduced graphene oxide hybrid materials. Journal of Materials Chemistry C, 2015, 3, 7088-7095.	2.7	43
92	Biotransformation and Biological Interaction of Graphene and Graphene Oxide during Simulated Oral Ingestion. Small, 2018, 14, e1800227.	5.2	42
93	Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Advanced Functional Materials, 2020, 30, 1908427.	7.8	42
94	Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors. Journal of Physical Chemistry C, 2021, 125, 11857-11866.	1.5	41
95	Cellulosic Graphene Biocomposites for Versatile Highâ€Performance Flexible Electronic Applications. Advanced Electronic Materials, 2016, 2, 1600245.	2.6	39
96	Highâ€₽ower Graphene–Carbon Nanotube Hybrid Supercapacitors. ChemNanoMat, 2017, 3, 436-446.	1.5	39
97	Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 22368-22380.	4.0	39
98	Extending the Colloidal Transition Metal Dichalcogenide Library to ReS ₂ Nanosheets for Application in Gas Sensing and Electrocatalysis. Small, 2019, 15, e1904670.	5.2	38
99	Ultrathin Orthorhombic PbS Nanosheets. Chemistry of Materials, 2019, 31, 8145-8153.	3.2	37
100	Optical trapping of carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2347-2351.	1.3	36
101	A Shape-Engineered Surface-Enhanced Raman Scattering Optical Fiber Sensor Working from the Visible to the Near-Infrared. Plasmonics, 2013, 8, 13-23.	1.8	36
102	How much does size really matter? Exploring the limits of graphene as Li ion battery anode material. Solid State Communications, 2017, 251, 88-93.	0.9	36
103	Biodegradable and Insoluble Cellulose Photonic Crystals and Metasurfaces. ACS Nano, 2020, 14, 9502-9511.	7.3	36
104	Graphene-Based Electrodes in a Vanadium Redox Flow Battery Produced by Rapid Low-Pressure Combined Gas Plasma Treatments. Chemistry of Materials, 2021, 33, 4106-4121.	3.2	35
105	Graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up. 2D Materials, 2018, 5, 045034.	2.0	34
106	Nanocrystals of Lead Chalcohalides: A Series of Kinetically Trapped Metastable Nanostructures. Journal of the American Chemical Society, 2020, 142, 10198-10211.	6.6	34
107	Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2352-2359.	1.3	33
108	Nanotubes Complexed with DNA and Proteins for Resistive-Pulse Sensing. ACS Nano, 2013, 7, 8857-8869.	7.3	30

#	Article	IF	CITATIONS
109	Graphene-Based Hole-Selective Layers for High-Efficiency, Solution-Processed, Large-Area, Flexible, Hydrogen-Evolving Organic Photocathodes. Journal of Physical Chemistry C, 2017, 121, 21887-21903.	1.5	30
110	Graphene morphology effect on the gas barrier, mechanical and thermal properties of thermoplastic polyurethane. Composites Science and Technology, 2020, 200, 108461.	3.8	30
111	Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon, 2015, 93, 574-594.	5.4	29
112	Nonâ€Equilibrium Synthesis of Highly Active Nanostructured, Oxygenâ€Incorporated Amorphous Molybdenum Sulfide HER Electrocatalyst. Small, 2020, 16, e2004047.	5.2	29
113	Molecularly engineered hole-transport material for low-cost perovskite solar cells. Chemical Science, 2020, 11, 2429-2439.	3.7	29
114	Moisture resistance in perovskite solar cells attributed to a water-splitting layer. Communications Materials, 2021, 2, .	2.9	29
115	Single-/Few-Layer Graphene as Long-Lasting Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 5373-5379.	2.5	28
116	Single-step exfoliation and functionalization of few-layers black phosphorus and its application for polymer composites. FlatChem, 2019, 18, 100131.	2.8	28
117	Flexible Graphene/Carbon Nanotube Electrochemical Double‣ayer Capacitors with Ultrahigh Areal Performance. ChemPlusChem, 2019, 84, 882-892.	1.3	28
118	Electrode selection rules for enhancing the performance of triboelectric nanogenerators and the role of few-layers graphene. Nano Energy, 2020, 76, 104989.	8.2	28
119	ITO nanoparticles break optical transparency/high-areal capacitance trade-off for advanced aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 25177-25186.	5.2	26
120	Enhancement of the Magnetic Coupling in Exfoliated CrCl ₃ Crystals Observed by Lowâ€Temperature Magnetic Force Microscopy and Xâ€ray Magnetic Circular Dichroism. Advanced Materials, 2020, 32, e2000566.	11.1	26
121	Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chemistry of Materials, 2020, 32, 2420-2429.	3.2	26
122	Silicon Few-Layer Graphene Nanocomposite as High-Capacity and High-Rate Anode in Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1793-1802.	2.5	26
123	Scalar Nanosecond Pulse Generation in a Nanotube Mode-Locked Environmentally Stable Fiber Laser. IEEE Photonics Technology Letters, 2014, 26, 1672-1675.	1.3	24
124	PFabrication of gold tips by chemical etching in aqua regia. Review of Scientific Instruments, 2007, 78, 103702.	0.6	23
125	Fast and reliable fabrication of gold tips with sub-50 nm radius of curvature for tip-enhanced Raman spectroscopy. Review of Scientific Instruments, 2013, 84, 073702.	0.6	23
126	Tin Diselenide Molecular Precursor for Solutionâ€Processable Thermoelectric Materials. Angewandte Chemie - International Edition, 2018, 57, 17063-17068.	7.2	23

#	Article	IF	CITATIONS
127	CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Materials, 2019, 6, 035007.	2.0	23
128	Phase Transitions in Low-Dimensional Layered Double Perovskites: The Role of the Organic Moieties. Journal of Physical Chemistry Letters, 2021, 12, 280-286.	2.1	23
129	Inverted perovskite solar cells with enhanced lifetime and thermal stability enabled by a metallic tantalum disulfide buffer layer. Nanoscale Advances, 2021, 3, 3124-3135.	2.2	23
130	Topochemical Transformation of Two-Dimensional VSe ₂ into Metallic Nonlayered VO ₂ for Water Splitting Reactions in Acidic and Alkaline Media. ACS Nano, 2022, 16, 351-367.	7.3	23
131	Hierarchical oxygen reduction reaction electrocatalysts based on FeSn0.5 species embedded in carbon nitride-graphene based supports. Electrochimica Acta, 2018, 280, 149-162.	2.6	22
132	Thioethylâ€Porphyrazine/Nanocarbon Hybrids for Photoinduced Electron Transfer. Advanced Functional Materials, 2018, 28, 1705418.	7.8	22
133	"lon sliding―on graphene: a novel concept to boost supercapacitor performance. Nanoscale Horizons, 2019, 4, 1077-1091.	4.1	22
134	Functionalized metallic transition metal dichalcogenide (TaS ₂) for nanocomposite membranes in direct methanol fuel cells. Journal of Materials Chemistry A, 2021, 9, 6368-6381.	5.2	22
135	Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries. 2D Materials, 2018, 5, 015024.	2.0	21
136	A two-fold engineering approach based on Bi ₂ Te ₃ flakes towards efficient and stable inverted perovskite solar cells. Materials Advances, 2020, 1, 450-462.	2.6	21
137	Enhancing the Performance of Poly(phthalazinone ether ketone)-Based Membranes Using a New Type of Functionalized TiO2 with Superior Proton Conductivity. Industrial & Engineering Chemistry Research, 2020, 59, 6589-6599.	1.8	21
138	Pulsed laser deposition of multiwalled carbon nanotubes thin films. Applied Surface Science, 2007, 254, 1260-1263.	3.1	20
139	Light depolarization induced by sharp metallic tips and effects on Tip-Enhanced Raman Spectroscopy. Thin Solid Films, 2008, 516, 8064-8072.	0.8	20
140	Ultralow friction of ink-jet printed graphene flakes. Nanoscale, 2017, 9, 7612-7624.	2.8	20
141	Debundling and Selective Enrichment of SWNTs for Applications in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-14.	1.4	19
142	Selfâ€Assembled Dense Colloidal Cu ₂ Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent. Advanced Functional Materials, 2016, 26, 4535-4542.	7.8	19
143	A ruthenium tetrazole complex-based high efficiency near infrared light electrochemical cell. Chemical Communications, 2017, 53, 6211-6214.	2.2	19
144	A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. Nanoscale Advances, 2020, 2, 4728-4739.	2.2	19

#	Article	IF	CITATIONS
145	Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking. Applied Physics Letters, 2013, 103, 221117.	1.5	18
146	Microwaveâ€Induced Structural Engineering and Pt Trapping in <i>6R</i> â€TaS ₂ for the Hydrogen Evolution Reaction. Small, 2020, 16, e2003372.	5.2	18
147	Liquidâ€Phase Exfoliated Gallium Selenide for Lightâ€Đriven Thinâ€Film Transistors. Advanced Electronic Materials, 2021, 7, 2001080.	2.6	18
148	Mixed Dimethylammonium/Methylammonium Lead Halide Perovskite Crystals for Improved Structural Stability and Enhanced Photodetection. Advanced Materials, 2022, 34, e2106160.	11.1	18
149	Defect-assisted photoluminescence in hexagonal boron nitride nanosheets. 2D Materials, 2020, 7, 045023.	2.0	17
150	Ruthenium Tetrazole Based Electroluminescent Device: Key Role of Counter Ions for Light Emission Properties. Journal of Physical Chemistry C, 2016, 120, 24965-24972.	1.5	16
151	Synergic use of two-dimensional materials to tailor interfaces in large area perovskite modules. Nano Energy, 2022, 95, 107019.	8.2	16
152	From scaled-up production of silicon-graphene nanocomposite to the realization of an ultra-stable full-cell Li-ion battery. 2D Materials, 2021, 8, 035014.	2.0	15
153	Highâ€Sulfurâ€Content Grapheneâ€Based Composite through Ethanol Evaporation for Highâ€Energy Lithiumâ€Sulfur Battery. ChemSusChem, 2020, 13, 1593-1602.	3.6	14
154	Hybrid Organic/Inorganic Photocathodes Based on WS ₂ Flakes as Hole Transporting Layer Material. Small Structures, 2021, 2, 2000098.	6.9	14
155	Electrotactile touch surface by using transparent graphene. , 2012, , .		13
156	An Insight into the Electrochemical Activity of Al-doped V ₂ O ₃ . Journal of the Electrochemical Society, 2020, 167, 100514.	1.3	13
157	3D printed silicon-few layer graphene anode for advanced Li-ion batteries. RSC Advances, 2021, 11, 35051-35060.	1.7	13
158	Enhanced electrical conductivity of poly(methyl methacrylate) filled with graphene and <i>in situ</i> synthesized gold nanoparticles. Nano Futures, 2018, 2, 025003.	1.0	12
159	Synthesis of layered silicon-graphene hetero-structures by wet jet milling for high capacity anodes in Li-ion batteries. 2D Materials, 2021, 8, 015012.	2.0	12
160	Reverse-Bias and Temperature Behaviors of Perovskite Solar Cells at Extended Voltage Range. ACS Applied Energy Materials, 2022, 5, 1378-1384.	2.5	12
161	Nonlinear subharmonic oscillation of orthotropic graphene-matrix composite. Computational Materials Science, 2015, 99, 164-172.	1.4	11
162	Water-dispersible few-layer graphene flakes for selective and rapid ion mercury (Hg ²⁺)-rejecting membranes. Materials Advances, 2020, 1, 387-402.	2.6	11

#	Article	IF	CITATIONS
163	Tin Diselenide Molecular Precursor for Solutionâ€Processable Thermoelectric Materials. Angewandte Chemie, 2018, 130, 17309-17314.	1.6	9
164	Graphene and related 2D materials for high efficient and stable perovskite solar cells. , 2017, , .		8
165	Twoâ€&tep Thermal Annealing: An Effective Route for 15 % Efficient Quasiâ€2D Perovskite Solar Cells. ChemPlusChem, 2021, 86, 1044-1048.	1.3	8
166	Few-Layers Graphene-Based Cement Mortars: Production Process and Mechanical Properties. Sustainability, 2022, 14, 784.	1.6	8
167	Sulfonated NbS ₂ -based proton-exchange membranes for vanadium redox flow batteries. Nanoscale, 2022, 14, 6152-6161.	2.8	8
168	Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics. , 2011, , 279-354.		7
169	Curvature dynamics and long-range effects on fluid–fluid interfaces with colloids. Soft Matter, 2019, 15, 2848-2862.	1.2	7
170	Carbon nanotubes irradiation effects induced by pulsed laser beams. Radiation Effects and Defects in Solids, 2008, 163, 453-461.	0.4	6
171	(Co, Ni)Sn _{0.5} Nanoparticles Supported on Hierarchical Carbon Nitrideâ€Grapheneâ€Based Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2029-2040.	1.7	6
172	A bilayer polymer electrolyte encompassing pyrrolidinium-based RTIL for binder-free silicon few-layer graphene nanocomposite anodes for Li-ion battery. Electrochemistry Communications, 2020, 118, 106807.	2.3	6
173	Nickel–Iron Layered Double Hydroxide Dispersions in Ethanol Stabilized by Acetate Anions. Inorganic Chemistry, 2022, 61, 4598-4608.	1.9	6
174	Transition metal dichalcogenides as catalysts for the hydrogen evolution reaction: The emblematic case of "inert―ZrSe ₂ as catalyst for electrolyzers. Nano Select, 2022, 3, 1069-1081.	1.9	6
175	Spray deposition of exfoliated MoS2 flakes as hole transport layer in perovskite-based photovoltaics. , 2015, , .		5
176	Molecular Engineering of Ionic Transition Metal Complexes and Counterions for Efficient Flexible Green Light-Emitting Electrochemical Cells. Journal of Physical Chemistry C, 2021, 125, 819-829.	1.5	5
177	Dependence of the polycarbonate mechanical performances on boron nitride flakes morphology. JPhys Materials, 2021, 4, 045002.	1.8	4
178	Perovskite solar cells stabilized by carbon nanostructure-P3HT blends. , 2015, , .		3
179	Tuning the morphology of sulfur–few layer graphene composites <i>via</i> liquid phase evaporation for battery application. Nanoscale Advances, 2022, 4, 1136-1144.	2.2	3
180	Ultrafast Fiber Laser Mode-locked by Graphene Based Saturable Absorber. , 2010, , .		2

1

 Solution processed graphene for photonics and optoelectronics. , 2013, , . Solar Cells: Few-Layer MoS2Flakes as Active Buffer Layer for Stable Perovskite Solar Cells (Adv. Energy) Tj ETQq0 0 OrgBT /Or 183 Poly(methyl methacrylate)â€Assisted Exfoliation of Graphite and Its Use in Acrylonitrileâ€Butadieneâ€5tyrene Composites. Chemistry - A European Journal, 2020, 26, 6715-6725. 1.7 	#	Article	IF	CITATIONS
Polv(methyl methacrylate)â€Assisted Exfoliation of Graphite and Its Use in	181	Solution processed graphene for photonics and optoelectronics. , 2013, , .		2
Poly(methyl methacrylate)â€Assisted Exfoliation of Graphite and Its Use in Acrylonitrileâ€Butadieneâ€Styrene Composites. Chemistry - A European Journal, 2020, 26, 6715-6725.	182	Solar Cells: Few-Layer MoS2Flakes as Active Buffer Layer for Stable Perovskite Solar Cells (Adv. Energy) Tj ETQq0	0 0 rgBT / 10.22	Overlock 10
	183	Poly(methyl methacrylate)â€Assisted Exfoliation of Graphite and Its Use in Acrylonitrileâ€Butadieneâ€Styrene Composites. Chemistry - A European Journal, 2020, 26, 6715-6725.	1.7	2

184 Ink-jet printed 2D crystal heterostructures. , 2017, , .

200	Letters, 2021, 15, 2100120.		
186	Fluorine-doped graphene as triboelectric material. 2D Materials, 0, , .	2.0	1
187	Broadband ultrafast pulse generation with double wall carbon nanotubes. , 2011, , .		0
188	Mode-locking using right-angle waveguide, based nanotube saturable absorber. , 2013, , .		0

189 Thin-Film Photovoltaics 2013. International Journal of Photoenergy, 2014, 2014, 1-3.

Modeling Photodetection at the Graphene/Ag 2 S Interface. Physica Status Solidi - Rapid Research

190Tracking exciton-trion interplay in the transient optical properties of WS2 inks. , 2017, , .0

191Graphene and Related 2D Materials: A Winning Strategy for Enhanced Efficiency and Stability in
Perovskite Photovoltaics. , 2018, , .0