
Yoshishige Inagaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10713372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of quorum sensingâ€controlled transcriptional regulator <scp>MarR</scp> and <scp>R</scp> ieske (<scp>2Fe</scp> â€" <scp>2S</scp>) clusterâ€containing protein (<scp>O</scp> rf5), which are involved in resistance to environmental stresses in <i><scp>P</scp>seudomonas syringae</i> pv. <i>tabaci</i> 6605. Molecular Plant Pathology, 2015, 16, 376-387.	4.2	6
2	Protection induced by volatile limonene against anthracnose disease in Arabidopsis thaliana. Journal of General Plant Pathology, 2015, 81, 415-419.	1.0	10
3	Expression of Medicago truncatula ecto-apyrase MtAPY1;1 in leaves of Nicotiana benthamiana restricts necrotic lesions induced by a virulent fungus. Journal of General Plant Pathology, 2014, 80, 222-229.	1.0	5

Plant cell walls as suppliers of potassium and sodium ions for induced resistance in pea (Pisum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62

5	The Medicago truncatula–Mycosphaerella pinodes interaction: a new pathosystem for dissecting fungal-suppressor-mediated disease susceptibility in plants. Journal of General Plant Pathology, 2013, 79, 1-11.	1.0	10
6	Suppression of mRNAs for lipoxygenase (LOX), allene oxide synthase (AOS), allene oxide cyclase (AOC) and 12-oxo-phytodienoic acid reductase (OPR) in pea reduces sensitivity to the phytotoxin coronatine and disease development by MycosphaerellaÂpinodes. Journal of General Plant Pathology, 2013, 79, 321-334.	1.0	14
7	Flagellin glycosylation is ubiquitous in a broad range of phytopathogenic bacteria. Journal of General Plant Pathology, 2013, 79, 359-365.	1.0	14
8	H2O2 production by copper amine oxidase, a component of the ecto-apyrase (ATPase)-containing protein complex(es) in the pea cell wall, is regulated by an elicitor and a suppressor from Mycosphaerella pinodes. Journal of General Plant Pathology, 2012, 78, 311-315.	1.0	21
9	Characterization of each aefR and mexT mutant in Pseudomonas syringae pv. tabaci 6605. Molecular Genetics and Genomics, 2012, 287, 473-484.	2.1	20
10	Type IV pilin is glycosylated in <i>Pseudomonas syringae</i> pv. <i>tabaci</i> 6605 and is required for surface motility and virulence. Molecular Plant Pathology, 2012, 13, 764-774.	4.2	29
11	Two flagellar stators and their roles in motility and virulence in Pseudomonas syringae pv. tabaci 6605. Molecular Genetics and Genomics, 2011, 285, 163-174.	2.1	23
12	Talaromyces wortmannii FS2 emits β-caryphyllene, which promotes plant growth and induces resistance. Journal of General Plant Pathology, 2011, 77, 336-341.	1.0	100
13	The Siderophore Pyoverdine of <i>Pseudomonas syringae</i> pv. tabaci 6605 Is an Intrinsic Virulence Factor in Host Tobacco Infection. Journal of Bacteriology, 2010, 192, 117-126.	2.2	112
14	Bacterial DNA activates immunity in Arabidopsis thaliana. Journal of General Plant Pathology, 2009, 75, 227-234.	1.0	39
15	Glycosylation of flagellin from Pseudomonas syringae pv. tabaci 6605 contributes to evasion of host tobacco plant surveillance system. Physiological and Molecular Plant Pathology, 2009, 74, 11-17.	2.5	23
16	Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction. Molecular Genetics and Genomics, 2008, 279, 313-22.	2.1	52
17	Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Molecular Genetics and Genomics, 2008, 279, 303-312.	2.1	117
18	Amino Acid Sequence of Bacterial Microbe-Associated Molecular Pattern flg22 Is Required for Virulence. Molecular Plant-Microbe Interactions, 2008, 21, 1165-1174.	2.6	80

Yoshishige Inagaki

#	Article	IF	CITATIONS
19	Elicitin-responsive lectin-like receptor kinase genes in BY-2 cells. DNA Sequence, 2007, 18, 152-159.	0.7	22
20	ldentification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cellular Microbiology, 2006, 8, 923-938.	2.1	110
21	Induction of defense responses in pea tissues by inorganic phosphate. Journal of General Plant Pathology, 2006, 72, 129-136.	1.0	17
22	Localization and responsiveness of a cowpea apyrase VsNTPase1 to phytopathogenic microorganisms. Journal of General Plant Pathology, 2006, 72, 143-151.	1.0	12
23	Pea extracellular Cu/Zn-superoxide dismutase responsive to signal molecules from a fungal pathogen. Journal of General Plant Pathology, 2006, 72, 265-272.	1.0	21
24	Identification of genes expressed during spore germination of Mycosphaerella pinodes. Journal of General Plant Pathology, 2005, 71, 190-195.	1.0	2
25	Regulation of elicitin-induced ethylene production in suspension-cultured tobacco BY-2 cells. Journal of General Plant Pathology, 2005, 71, 273-279.	1.0	4
26	Flagellin from Pseudomonas syringae pv. tabaci induced hrp-independent HR in tomato. Journal of General Plant Pathology, 2005, 71, 289-295.	1.0	15
27	Defense responses of Arabidopsis thaliana inoculated with Pseudomonas syringae pv. tabaci wild type and defective mutants for flagellin (ΔfliC) and flagellin-glycosylation (Δorf1). Journal of General Plant Pathology, 2005, 71, 302-307.	1.0	21
28	Characterization of a Novel Na+/H+ Antiporter Gene InNHX2 and Comparison of InNHX2 with InNHX1, Which is Responsible for Blue Flower Coloration by Increasing the Vacuolar pH in the Japanese Morning Glory. Plant and Cell Physiology, 2005, 46, 259-267.	3.1	99
29	Agrobacterium tumefaciens -mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. Journal of General Plant Pathology, 2004, 70, 93-96.	1.0	45
30	Cloning and characterization of pea apyrases: involvement of PsAPY1 in response to signal molecules from the pea pathogen Mycosphaerella pinodes. Journal of General Plant Pathology, 2003, 69, 33-38.	1.0	22
31	Need for flagella for complete virulence of Pseudomonas syringae pv. tabaci: genetic analysis with flagella-defective mutants ?fliC and ?fliD in host tobacco plants. Journal of General Plant Pathology, 2003, 69, 244-249.	1.0	45
32	Expression of allene oxide synthase and allene oxide cyclase in the interactions between pea and fungal pathogens. Journal of General Plant Pathology, 2003, 69, 351-357.	1.0	11
33	Post-Translational Modification of Flagellin Determines the Specificity of HR Induction. Plant and Cell Physiology, 2003, 44, 342-349.	3.1	86
34	Flagellin Glycosylation Island in Pseudomonas syringae pv. glycinea and Its Role in Host Specificity. Journal of Bacteriology, 2003, 185, 6658-6665.	2.2	118
35	Dissemination of the Phage-Associated Novel Superantigen Gene speL in Recent Invasive and Noninvasive Streptococcus pyogenes M3/T3 Isolates in Japan. Infection and Immunity, 2002, 70, 3227-3233.	2.2	74
36	cDNA cloning and characterization of tobacco ABC transporter: NtPDR1 is a novel elicitor-responsive gene 1. FEBS Letters, 2002, 518, 164-168.	2.8	77

Yoshishige Inagaki

#	Article	IF	CITATIONS
37	Efficient gene targeting by homologous recombination in rice. Nature Biotechnology, 2002, 20, 1030-1034.	17.5	308
38	Molecular Cloning of cDNA for a Novel Pea Dof Protein, PsDof1, and Its DNA-Binding Activity to the Promoter of PsDof1 Gene Plant Biotechnology, 2002, 19, 251-260.	1.0	7
39	Genes Encoding the Vacuolar Na+/H+ Exchanger and Flower Coloration. Plant and Cell Physiology, 2001, 42, 451-461.	3.1	185
40	Simplified Transposon Display (STD): a New Procedure for Isolation of a Gene Tagged by a Transposable Element Belonging to the Tpn1 Family in the Japanese Morning Glory Plant Biotechnology, 2001, 18, 143-149.	1.0	15
41	Colour-enhancing protein in blue petals. Nature, 2000, 407, 581-581.	27.8	167
42	Genomic Differences inStreptococcus pyogenesSerotype M3 between Recent Isolates Associated with Toxic Shock–Like Syndrome and Past Clinical Isolates. Journal of Infectious Diseases, 2000, 181, 975-983.	4.0	21
43	The Functional Expression of the CHS-D and CHS-E Genes of the Common Morning Glory (Ipomoea) Tj ETQq1 1 (2000, 17, 203-210.).784314 1.0	rgBT /Overloc 8
44	Floricultural Traits and Transposable Elements in the Japanese and Common Morning Gloriesaa. Annals of the New York Academy of Sciences, 1999, 870, 265-274.	3.8	45
45	Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene, 1999, 226, 181-188.	2.2	67
46	Molecular Characterization of the Gene for Dihydroflavonol 4-Reductase of Japonica Rice Varieties Plant Biotechnology, 1998, 15, 221-225.	1.0	16
47	Structural analysis of Tpn1, a transposable element isolated from Japanese morning glory bearing variegated flowers. Molecular Genetics and Genomics, 1995, 247, 114-117	2.4	25