
Andres Mejia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1071322/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Molecular dynamics of liquid–liquid equilibrium and interfacial properties of aqueous solutions of methyl esters. Physical Chemistry Chemical Physics, 2022, 24, 5371-5382.	1.3	1
2	Impact of morphology on the interfacial tension of liquid-liquid equilibrium interfaces in asymmetric mixtures. Chemical Physics, 2022, 557, 111498.	0.9	5
3	Vapor-liquid phase equilibria, liquid densities, liquid viscosities and surface tensions for the ternary n-hexaneÂ+Âcyclopentyl methyl etherÂ+Â1-butanol mixture. Fluid Phase Equilibria, 2022, 558, 113444.	1.4	5
4	Density and viscosity of liquid mixtures formed by n-hexane, ethanol, and cyclopentyl methyl ether. Journal of Molecular Liquids, 2022, 359, 119353.	2.3	6
5	Comment on "lsobaric Vapor + Liquid Equilibrium Measurements and Calculations for Using Nontraditional Models for the Association Systems of Ethyl Acetate + 2-Ethylhexanoic Acid and Propyl Acetate + 2-Ethylhexanoic Acid at Atmospheric Pressure― Journal of Chemical & Engineering Data, 2021. 66. 848-851.	1.0	Ο
6	Modelling of solubility of vitamin K3 derivatives in supercritical carbon dioxide using cubic and SAFT equations of state. Journal of Supercritical Fluids, 2021, 167, 105040.	1.6	16
7	SCTPy: A Python Code for Calculating the Interfacial Properties of Fluids Based on the Square Gradient Theory Using the SAFT-VR Mie Equation of State. Journal of Chemical Information and Modeling, 2021, 61, 1244-1250.	2.5	27
8	Vapor–Liquid Equilibrium, Surface Tension, and Dynamic Viscosity for the Propan-1-ol + Dibutyl Ether Binary Mixture. Journal of Chemical & Engineering Data, 2021, 66, 2783-2792.	1.0	4
9	Measurement of phase equilibrium and interfacial tension for the (1-propanolÂ+Âcyclopentyl methyl) Tj ETQq1	1 0.784314 1.0	rgBT /Overld
10	Measurements and modeling of the phase equilibria for the n-hexaneÂ+ÂethanolÂ+Âdibutyl ether ternary mixture and its dibutyl ether sub-binary mixtures at 94ÂkPa. Fuel, 2021, 297, 120361.	3.4	6
11	Phase equilibria and interfacial properties of selected methaneÂ+Ân-alkane binary mixtures. Journal of Molecular Liquids, 2021, 341, 116918.	2.3	6
12	Assessing salt-surfactant synergistic effects on interfacial tension from molecular dynamics simulations. Journal of Molecular Liquids, 2020, 299, 112223.	2.3	35
13	Vapor–Liquid Equilibrium and Interfacial Tension for the 1-Butanol + Cyclopentyl Methyl Ether Binary Mixture. Journal of Chemical & Engineering Data, 2020, 65, 4142-4149.	1.0	10
14	Isobaric vapor – liquid – liquid equilibrium for waterÂ+ÂMTBEÂ+Âalcohol (ethanol or 1-butanol) mixtures. Fluid Phase Equilibria, 2020, 523, 112768.	1.4	8
15	Phasepy: A Python based framework for fluid phase equilibria and interfacial properties computation. Journal of Computational Chemistry, 2020, 41, 2504-2526.	1.5	13
16	Preferential Orientations and Anomalous Interfacial Tensions in Aqueous Solutions of Alcohols. Journal of Physical Chemistry B, 2020, 124, 8388-8401.	1.2	3
17	A Novel Experimental Procedure to Measure the Bulk Mass Densities and Interfacial Tensions for Mixtures at Vapor–Liquid–Liquid Equilibria. Journal of Chemical & Engineering Data, 2020, 65, 3344-3356.	1.0	5
18	Isobaric vapor–liquid equilibrium and isothermal surface tension for hexaneÂ+ cyclopentyl methyl ether binary mixture: Experimental determinations and theoretical predictions. Fluid Phase Equilibria, 2020, 520, 112654.	1.4	12

#	Article	IF	CITATIONS
19	Vapor–liquid equilibrium at 94ÂkPa and surface tension at 298.15ÂK for hexaneÂ+ÂethanolÂ+Âcyclopentyl methyl ether mixture. Fuel, 2020, 279, 118415.	3.4	10
20	Vapour–liquid phase equilibria and interfacial properties of fatty acid methyl esters from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2020, 22, 4974-4983.	1.3	11
21	Probing the Interfacial Behavior of Type IIIa Binary Mixtures Along the Three-Phase Line Employing Molecular Thermodynamics. Molecules, 2020, 25, 1499.	1.7	9
22	A Guide to Computing Interfacial Properties of Fluids from Molecular Simulations [Article v1.0]. Living Journal of Computational Molecular Science, 2020, 2, .	2.2	17
23	Phase Equilibria and Interfacial Properties of the Tetrahydrofuran + Methane Binary Mixture from Experiment and Computer Simulation. Journal of Physical Chemistry C, 2019, 123, 20960-20970.	1.5	12
24	The additivity of surface and volumetric properties of α,ω-dihalogenoalkanes. Journal of Chemical Thermodynamics, 2019, 132, 222-228.	1.0	2
25	Experimental Determination of Isobaric Vapor–Liquid Equilibrium and Isothermal Interfacial Tensions for the Binary Ethanol + Cyclopentyl Methyl Ether Mixture. Journal of Chemical & Engineering Data, 2019, 64, 1970-1977.	1.0	12
26	Combined Experimental, Theoretical, and Molecular Simulation Approach for the Description of the Fluid-Phase Behavior of Hydrocarbon Mixtures within Shale Rocks. Energy & Fuels, 2018, 32, 5750-5762.	2.5	46
27	Densities and interfacial tensions for fatty acid methyl esters (from methyl formate to methyl) Tj ETQq1 1 0.7843 Thermodynamics, 2018, 121, 121-128.	14 rgBT / 1.0	/Overlock 10 19
28	Experimental measurements and theoretical modeling of high-pressure mass densities and interfacial tensions of carbon dioxide + n-heptane + toluene and its carbon dioxide binary systems. Fuel, 2018, 223 92-102.	8,3.4	13
29	Prediction of the water/oil interfacial tension from molecular simulations using the coarse-grained SAFT-Î ³ Mie force field. Fluid Phase Equilibria, 2018, 476, 9-15.	1.4	40
30	A rigorous and accurate approach for predicting the wet-to-dry transition for working mixtures in organic Rankine cycles. Energy, 2018, 156, 509-519.	4.5	17
31	Interfacial Properties of Tetrahydrofuran and Carbon Dioxide Mixture from Computer Simulation. Journal of Physical Chemistry C, 2018, 122, 16142-16153.	1.5	7
32	Measurement and modeling of isobaric vapor – Liquid equilibrium and isothermal interfacial tensions of ethanolâ€~+â€~hexaneâ€~+â€~2,5 – Dimethylfuran mixture. Fuel, 2018, 229, 105-115.	3.4	24
33	Measurement and modeling of high pressure density and interfacial tension of carbon dioxide + tetrahydrofuran mixture. Journal of Supercritical Fluids, 2017, 128, 359-369.	1.6	4
34	Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States. Langmuir, 2017, 33, 11518-11529.	1.6	25
35	Coarse-grained theoretical modeling and molecular simulations of nitrogen + n -alkanes: (n -pentane,) Tj ETQq1 1	0.78431 1.6	14 rgBT /Over
36	Comments on "Vapor–Liquid Equilibrium for Ternary and Binary Systems of Tetrahydrofuran, Cyclohexane, and 1,2-Propanediol at 101.3 kPa― Journal of Chemical & Engineering Data, 2016, 61, 1961-1963.	1.0	1

#	Article	IF	CITATIONS
37	Bottled SAFT: A Web App Providing SAFT-γ Mie Force Field Parameters for Thousands of Molecular Fluids. Journal of Chemical Information and Modeling, 2016, 56, 1609-1614.	2.5	36
38	Phase behaviour and interfacial properties of ternary system CO ₂ + n-butane + n-decane: coarse-grained theoretical modelling and molecular simulations. Molecular Physics, 2016, 114, 2627-2640.	0.8	15
39	Interfacial tensions of industrial fluids from a molecularâ€based square gradient theory. AICHE Journal, 2016, 62, 1781-1794.	1.8	66
40	Understanding the interfacial behavior in isopycnic Lennard-Jones mixtures by computer simulations. Physical Chemistry Chemical Physics, 2016, 18, 1114-1124.	1.3	21
41	SAFT- Î ³ force field for the simulation of molecular fluids 6: Binary and ternary mixtures comprising water, carbon dioxide, and n -alkanes. Journal of Chemical Thermodynamics, 2016, 93, 320-336.	1.0	71
42	Barotropic phenomena in binary mixtures. Fluid Phase Equilibria, 2015, 394, 175-185.	1.4	9
43	Atmospheric densities and interfacial tensions for 1-alkanol (1-butanol to 1-octanol)+water and ether (MTBE, ETBE, DIPE, TAME and THP)+water demixed mixtures. Fluid Phase Equilibria, 2015, 396, 88-97.	1.4	31
44	Early regimes of water capillary flow in slit silica nanochannels. Physical Chemistry Chemical Physics, 2015, 17, 14731-14739.	1.3	59
45	Comments "On The Consistency and Correctness of Thermodynamics Phase Equilibria Modeling and Correlations Reports Published In Fuel Journal― Fuel, 2015, 140, 812-813.	3.4	6
46	Phase equilibria and interfacial tensions in the systems ethanol+2-methoxy-2-methylbutane+hexane. Fuel, 2014, 117, 996-1003.	3.4	11
47	Use of Equations of State and Coarse Grained Simulations to Complement Experiments: Describing the Interfacial Properties of Carbon Dioxide + Decane and Carbon Dioxide + Eicosane Mixtures. Journal of Chemical & Engineering Data, 2014, 59, 2928-2941.	1.0	85
48	Experimental determination and theoretical prediction of the vapor–liquid equilibrium and interfacial tensions of the system methyl-tert-butyl ether + 2,5-dimethylfuran. Fuel, 2014, 116, 183-190.	3.4	19
49	Comments on "isobaric (vapor + liquid) equilibria for three binary systems (toluene + anisole, n) Tj ETQq1 1	0.784314 1.4	rgBT /Overloo
50	Force Fields for Coarse-Grained Molecular Simulations from a Corresponding States Correlation. Industrial & Engineering Chemistry Research, 2014, 53, 4131-4141.	1.8	109
51	High-pressure densities and interfacial tensions of binary systems containing carbon dioxide+n-alkanes: (n-Dodecane, n-tridecane, n-tetradecane). Fluid Phase Equilibria, 2014, 380, 82-92.	1.4	60
52	On the phase and interface behavior along the three-phase line of ternary Lennard-Jones mixtures: A collaborative approach based on square gradient theory and molecular dynamics simulations. Journal of Chemical Physics, 2014, 141, 014503.	1.2	16
53	Comprehensive Characterization of Interfacial Behavior for the Mixture CO ₂ + H ₂ O + CH ₄ : Comparison between Atomistic and Coarse Grained Molecular Simulation Models and Density Gradient Theory. Journal of Physical Chemistry C, 2014, 118, 24504-24519.	1.5	52
54	High-pressure interfacial tensions for nitrogen+ethanol, or hexane or 2-methoxy-2-methylbutane: A comparison between experimental tensiometry and Monte Carlo simulations. Journal of Supercritical Fluids, 2014, 89, 78-88.	1.6	26

#	Article	IF	CITATIONS
55	Vapor–liquid equilibrium and interfacial tensions of the system ethanol+hexane+tetrahydro-2H-Pyran. Fluid Phase Equilibria, 2014, 361, 229-236.	1.4	5
56	Resolving Discrepancies in the Measurements of the Interfacial Tension for the CO ₂ + H ₂ O Mixture by Computer Simulation. Journal of Physical Chemistry Letters, 2014, 5, 1267-1271.	2.1	43
57	Coarse-grained molecular dynamic simulations of selected thermophysical properties for 1-Butyl-3-methylimidazolium hexafluorophosphate. Journal of Molecular Liquids, 2013, 186, 106-115.	2.3	4
58	Surface Tension of 1-Ethyl-3-methylimidazolium Ethyl Sulfate or 1-Butyl-3-methylimidazolium Hexafluorophosphate with Argon and Carbon Dioxide. Journal of Chemical & Engineering Data, 2013, 58, 1203-1211.	1.0	12
59	Comments on "Experimental Measurements of Vapor–Liquid Equilibrium Data for the Binary Systems of Methanol + 2-Butyl Acetate, 2-Butyl Alcohol + 2-Butyl Acetate, and Methyl Acetate + 2-Butyl Acetate at 101.33 kPaâ€; Journal of Chemical & Engineering Data, 2013, 58, 3563-3566.	1.0	11
60	Experimental determination and theoretical modeling of the vapor–liquid equilibrium and densities of the binary system butan-2-ol+tetrahydro-2H-pyran. Fluid Phase Equilibria, 2013, 342, 52-59.	1.4	5
61	Isobaric vapor–liquid equilibrium and isothermal surface tensions of 2,2′-oxybis[propane]+2,5-Dimethylfuran. Fluid Phase Equilibria, 2013, 345, 60-67.	1.4	17
62	lsobaric Vapor–Liquid Equilibrium and Isothermal Interfacial Tensions for the System Ethanol + 2,5-Dimethylfuran. Journal of Chemical & Engineering Data, 2013, 58, 3226-3232.	1.0	21
63	Molar isopycnicity in heterogeneous binary mixtures. Fluid Phase Equilibria, 2012, 336, 84-97.	1.4	14
64	Vapor–Liquid Equilibrium, Densities, and Interfacial Tensions of the System Ethanol + Tetrahydro-2 <i>H</i> -pyran. Journal of Chemical & Engineering Data, 2012, 57, 561-567.	1.0	5
65	Vapor–Liquid Equilibrium, Densities, and Interfacial Tensions of the System Hexane + 2,5-Dimethylfuran. Journal of Chemical & Engineering Data, 2012, 57, 2681-2688.	1.0	32
66	A rigorous approach for predicting the slope and curvature of the temperature–entropy saturation boundary of pure fluids. Energy, 2012, 45, 888-899.	4.5	38
67	A topological approach to mass barotropic phenomena in asymmetric mixtures. Fluid Phase Equilibria, 2012, 313, 171-181.	1.4	14
68	Experimental determination and theoretical modeling of the vapor–liquid equilibrium and surface tensions of hexane+tetrahydro-2H-pyran. Fluid Phase Equilibria, 2012, 316, 55-65.	1.4	20
69	Comparison of United-Atom Potentials for the Simulation of Vapor–Liquid Equilibria and Interfacial Properties of Long-Chain <i>n</i> -Alkanes up to <i>n</i> -C ₁₀₀ . Journal of Physical Chemistry B, 2011, 115, 12822-12834.	1.2	46
70	Vaporâ^'Liquid Equilibrium in the Binary Systems 2-Butanol + <i>tert</i> -Amyl Methyl Ether, 2-Butanol + Heptane, and Heptane + <i>tert</i> -Amyl Methyl Ether. Journal of Chemical & Engineering Data, 2011, 56, 2256-2265.	1.0	17
71	Vapor–Liquid Equilibria and Interfacial Tensions of the System Ethanol + 2-Methoxy-2-methylbutane. Journal of Chemical & Engineering Data, 2011, 56, 3142-3148.	1.0	17
72	Measurement and theoretical prediction of the vapor–liquid equilibrium, densities and interfacial tensions of the system hexane+2-methoxy-2-methylbutane. Fluid Phase Equilibria, 2011, 308, 15-24.	1.4	18

#	Article	IF	CITATIONS
73	Interfacial tensions of binary mixtures of ethanol with octane, decane, dodecane, and tetradecane. Journal of Chemical Thermodynamics, 2011, 43, 1395-1400.	1.0	42
74	Vaporâ^'Liquid Equilibria and Interfacial Tensions of the System Ethanol + 2-Methoxy-2-methylpropane. Journal of Chemical & Engineering Data, 2010, 55, 428-434.	1.0	18
75	Interfacial properties of selected binary mixtures containing n-alkanes. Fluid Phase Equilibria, 2009, 282, 68-81.	1.4	98
76	An accurate direct technique for parametrizing cubic equations of state. Fluid Phase Equilibria, 2008, 264, 201-210.	1.4	17
77	An accurate direct technique for parameterizing cubic equations of state. Fluid Phase Equilibria, 2008, 265, 66-83.	1.4	10
78	An accurate direct technique for parameterizing cubic equations of state. Fluid Phase Equilibria, 2008, 265, 155-172.	1.4	13
79	Vapor–liquid equilibria and interfacial tensions for the ternary system acetone+2,2â€2-oxybis[propane]+cyclohexane and its constituent binary systems. Fluid Phase Equilibria, 2008, 270, 75-86.	1.4	16
80	Phase equilibria and interfacial tensions in the systems methyl tert-butyl ether+acetone+cyclohexane, methyl tert-butyl ether+acetone and methyl tert-butyl ether+cyclohexane. Fluid Phase Equilibria, 2008, 273, 68-77.	1.4	14
81	Wounding prior to challenge substantially improves infectivity of cottontail rabbit papillomavirus and allows for standardization of infection. Journal of Virological Methods, 2008, 148, 34-39.	1.0	45
82	Vapor–liquid equilibrium, densities, and interfacial tensions for the system benzene + propan-1-ol. Physics and Chemistry of Liquids, 2008, 46, 175-190.	0.4	10
83	Vapor–liquid equilibrium, densities, and interfacial tensions for the system ethyl 1,1-dimethylethyl ether (ETBE)+propan-1-ol. Fluid Phase Equilibria, 2007, 255, 121-130.	1.4	18
84	Association and molecular chain length effects on interfacial behavior§. Physics and Chemistry of Liquids, 2006, 44, 45-59.	0.4	18
85	Perfect wetting along a three-phase line: Theory and molecular dynamics simulations. Journal of Chemical Physics, 2006, 124, 244505.	1.2	25
86	Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures. Fluid Phase Equilibria, 2005, 227, 225-238.	1.4	63
87	Correlation and prediction of interface tension for fluid mixtures: An approach based on cubic equations of state with the wong-sandler mixing rule. Journal of Phase Equilibria and Diffusion, 2005, 26, 215-224.	0.5	29
88	On the Interfacial Behavior about the Shield Region. International Journal of Thermophysics, 2005, 26, 13-29.	1.0	18
89	Phase and interface behaviors in type-I and type-V Lennard-Jones mixtures: Theory and simulations. Journal of Chemical Physics, 2005, 123, 034505.	1.2	77
90	Correlation and Prediction of Interface Tension for Fluid Mixtures: An Approach Based on Cubic Equations of State with the Wong-Sandler Mixing Rule. Journal of Phase Equilibria and Diffusion, 2005, 26, 215-224.	0.5	0

#	Article	IF	CITATIONS
91	Interfacial Behavior in Type IV Systems. International Journal of Thermophysics, 2004, 25, 1395-1414.	1.0	20
92	Estimation of interfacial behavior using the global phase diagram approach I. Carbon dioxide–n-alkanes. Thermochimica Acta, 2004, 411, 171-176.	1.2	25
93	Rebuttal to the Comments of Paul M. Mathias on "Unnoticed Pitfalls of Soave-Type Alpha Functions in Cubic Equations of Stateâ€: Industrial & Engineering Chemistry Research, 2004, 43, 1895-1896.	1.8	10
94	Unnoticed Pitfalls of Soave-Type Alpha Functions in Cubic Equations of State. Industrial & Engineering Chemistry Research, 2003, 42, 5662-5673.	1.8	71
95	Isobaric Vapor-Liquid Equilibria and Densities for the Binary Systems Oxolane + Ethyl 1,1-Dimethylethyl Ether, Oxolane + 2-Propanol and Propan-2-One + Trichloromethane. Physics and Chemistry of Liquids, 2003, 41, 283-301.	0.4	15
96	ISOBARIC VAPOR—LIQUID EQUILIBRIA FOR THE TERNARY SYSTEM OXOLANE + ETHYL 1, 1-DIMETHYLETHYL ETHER + 2-PROPANOL AT 50kPa. Physics and Chemistry of Liquids, 2003, 41, 493-501.	0.4	3
97	Isobaric Vapor-Liquid Equilibria and Densities for the System Ethyl 1,1-Dimethylethyl Ether + 2-Propanol. Physics and Chemistry of Liquids, 2002, 40, 685-702.	0.4	8
98	A Model-Free Approach Data Treatment of Vaporâ^'Liquid Equilibrium Data in Ternary Systems. 1. Theory and Numerical Procedures. Industrial & Engineering Chemistry Research, 2001, 40, 2134-2148.	1.8	13
99	A Model-Free Approach Data Treatment of Vaporâ^'Liquid Equilibrium Data in Ternary Systems. 2. Applications. Industrial & Engineering Chemistry Research, 2001, 40, 2149-2159.	1.8	14
100	Prediction of azeotropic behavior using equations of state. Fluid Phase Equilibria, 1999, 166, 141-162.	1.4	14