Jiaguang Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/1071189/jiaguang-zhang-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

35
papers

3,147
citations

27
h-index

38
g-index

38
ext. papers

11.3
avg, IF

5.75
L-index

#	Paper	IF	Citations
35	Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. <i>Energy and Environmental Science</i> , 2016 , 9, 3314-3347	35.4	413
34	Thermally stable single atom Pt/m-AlO for selective hydrogenation and CO oxidation. <i>Nature Communications</i> , 2017 , 8, 16100	17.4	390
33	A Series of NiM (M = Ru, Rh, and Pd) Bimetallic Catalysts for Effective Lignin Hydrogenolysis in Water. <i>ACS Catalysis</i> , 2014 , 4, 1574-1583	13.1	351
32	Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 8319-23	16.4	294
31	Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. <i>Green Chemistry</i> , 2014 , 16, 2432-2437	10	201
30	Downstream processing of lignin derived feedstock into end products. <i>Chemical Society Reviews</i> , 2020 , 49, 5510-5560	58.5	117
29	Transformation of Chitin and Waste Shrimp Shells into Acetic Acid and Pyrrole. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 3912-3920	8.3	117
28	Base promoted hydrogenolysis of lignin model compounds and organosolv lignin over metal catalysts in water. <i>Chemical Engineering Science</i> , 2015 , 123, 155-163	4.4	115
27	Production of Terephthalic Acid from Corn Stover Lignin. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4934-4937	16.4	95
26	Thermoresponsive polymers based on poly-vinylpyrrolidone: applications in nanoparticle catalysis. <i>Chemical Communications</i> , 2010 , 46, 1631-3	5.8	88
25	Acid-Catalyzed Chitin Liquefaction in Ethylene Glycol. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2081-2089	8.3	76
24	Conversion of chitin derived N-acetyl-D-glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water. <i>Green Chemistry</i> , 2015 , 17, 1024-1031	10	72
23	Chitin-Derived Mesoporous, Nitrogen-Containing Carbon for Heavy-Metal Removal and Styrene Epoxidation. <i>ChemPlusChem</i> , 2015 , 80, 1556-1564	2.8	68
22	Harnessing the Wisdom in Colloidal Chemistry to Make Stable Single-Atom Catalysts. <i>Advanced Materials</i> , 2018 , 30, e1802304	24	62
21	Single-step conversion of lignin monomers to phenol: Bridging the gap between lignin and high-value chemicals. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 1445-1452	11.3	60
20	Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. <i>Angewandte Chemie</i> , 2016 , 128, 8459-8463	3.6	59
19	Formic acid-mediated liquefaction of chitin. <i>Green Chemistry</i> , 2016 , 18, 5050-5058	10	58

(2016-2014)

18	A Metal-Free, Carbon-Based Catalytic System for the Oxidation of Lignin Model Compounds and Lignin. <i>ChemPlusChem</i> , 2014 , 79, 825-834	2.8	52
17	Production of Glucosamine from Chitin by Co-solvent Promoted Hydrolysis and Deacetylation. <i>ChemCatChem</i> , 2017 , 9, 2790-2796	5.2	51
16	Popping of graphite oxide: application in preparing metal nanoparticle catalysts. <i>Advanced Materials</i> , 2015 , 27, 4688-94	24	43
15	Direct Conversion of Mono- and Polysaccharides into 5-Hydroxymethylfurfural Using Ionic-Liquid Mixtures. <i>ChemSusChem</i> , 2016 , 9, 2089-96	8.3	43
14	Catalytic transfer hydrogenolysis as an efficient route in cleavage of lignin and model compounds. <i>Green Energy and Environment</i> , 2018 , 3, 328-334	5.7	41
13	Efficient cleavage of aryl ether C-O linkages by Rh-Ni and Ru-Ni nanoscale catalysts operating in water. <i>Chemical Science</i> , 2018 , 9, 5530-5535	9.4	41
12	Production of Terephthalic Acid from Corn Stover Lignin. <i>Angewandte Chemie</i> , 2019 , 131, 4988-4991	3.6	40
11	Ligands Modulate Reaction Pathway in the Hydrogenation of 4-Nitrophenol Catalyzed by Gold Nanoclusters. <i>ChemCatChem</i> , 2018 , 10, 395-402	5.2	38
10	Rh nanoparticles with NiOx surface decoration for selective hydrogenolysis of CO bond over arene hydrogenation. <i>Journal of Molecular Catalysis A</i> , 2016 , 422, 188-197		34
9	Thermally responsive gold nanocatalysts based on a modified poly-vinylpyrrolidone. <i>Journal of Molecular Catalysis A</i> , 2013 , 371, 29-35		29
8	Aqueous-phase hydrogenation of alkenes and arenes: The growing role of nanoscale catalysts. <i>Catalysis Today</i> , 2015 , 247, 96-103	5.3	27
7	Rapid nanoparticle-catalyzed hydrogenations in triphasic millireactors with facile catalyst recovery. <i>Green Chemistry</i> , 2014 , 16, 4654-4658	10	20
6	Photocatalytic carboxylation of CH bonds promoted by popped graphene oxide (PGO) either bare or loaded with CuO. <i>Journal of CO2 Utilization</i> , 2017 , 20, 97-104	7.6	17
5	Support effects in the de-methoxylation of lignin monomer 4-propylguaiacol over molybdenum-based catalysts. <i>Fuel Processing Technology</i> , 2020 , 199, 106224	7.2	13
4	NiAg Catalysts for Selective Hydrogenolysis of the Lignin CD Bond. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 610-619	3.1	13
3	Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst. <i>Frontiers in Chemistry</i> , 2013 , 1, 17	5	6
2	Formic acidBided biomass valorization. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2020 , 24, 67-71	7.9	2
1	Tailoring Biomass Conversions using Ionic Liquid Immobilized Metal Nanoparticles 2016 , 233-247		