Inderjit S Dhillon

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/10711653/publications.pdf
Version: 2024-02-01

Non-Exhaustive, Overlapping Clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019, 41, 2644-2659.

2 Partial Hard Thresholding. IEEE Transactions on Information Theory, 2017, 63, 3029-3038.
1.5

Clustered Matrix Approximation. SIAM Journal on Matrix Analysis and Applications, 2016, 37, 1531-1555.
0.7

4

4 Goal-Directed Inductive Matrix Completion. , 2016, , .
19
Overlapping Community Detection Using Neighborhood-Inflated Seed Expansion. IEEE Transactions on
5
Knowledge and Data Engineering, 2016, 28, 1272-1284.
$6 \quad$ A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery. JMLR
Workshop and Conference Proceedings, 2016, 48, 2272-2280.
1.4

Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that
$7 \quad \begin{aligned} & \text { Square Root Graphical Models: Multivariate Generaizations of Univariate Exponential Families that } \\ & \text { Permit Positive Dependencies. JMLR Workshop and Conference Proceedings, 2016, 48, 2445-2453. }\end{aligned}$
$8 \quad$ Inductive matrix completion for predicting geneâ€"disease associations. Bioinformatics, 2014, 30, 160-i68.
1.8

274
$9 \quad$ Parallel matrix factorization for recommender systems. Knowledge and Information Systems, 2014, 41,
793-819.
2.1

147

10 Stochastic Blockmodel with Cluster Overlap, Relevance Selection, and Similarity-Based Smoothing.,
2013, , .

Prediction and Validation of Gene-Disease Associations Using Methods Inspired by Social Network
Analyses. PLoS ONE, 2013, 8, e58977.
$1.1 \quad 114$

12 Clustered embedding of massive social networks. Performance Evaluation Review, 2012, 40, 331-342.
0.4

2

13 On a Zero-Finding Problem Involving the Matrix Exponential. SIAM Journal on Matrix Analysis and
Applications, 2012, 33, 1237-1249.
0.7

0

14 Scalable and Memory-Efficient Clustering of Large-Scale Social Networks., 2012, , .
23

15 Clustered low rank approximation of graphs in information science applications. , 2011, , .

Fast coordinate descent methods with variable selection for non-negative matrix factorization. , 2011,

17 Supervised Link Prediction Using Multiple Sources. , 2010, , .

19	Simultaneous Unsupervised Learning of Disparate Clusterings. Statistical Analysis and Data Mining, 2008, 1, 195-210.	1.4	42
20	Fast Projection-Based Methods for the Least Squares Nonnegative Matrix Approximation Problem. Statistical Analysis and Data Mining, 2008, 1, 38-51.	1.4	37
21	Matrix Nearness Problems with Bregman Divergences. SIAM Journal on Matrix Analysis and Applications, 2008, 29, 1120-1146.	0.7	115
22	Weighted Graph Cuts without Eigenvectors A Multilevel Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29, 1944-1957.	9.7	719
23	The design and implementation of the MRRR algorithm. ACM Transactions on Mathematical Software, 2006, 32, 533-560.	1.6	68
24	Glued Matrices and the MRRR Algorithm. SIAM Journal of Scientific Computing, 2005, 27, 496-510.	1.3	15
25	A Parallel Eigensolver for Dense Symmetric Matrices Based on Multiple Relatively Robust Representations. SIAM Journal of Scientific Computing, 2005, 27, 43-66.	1.3	44
26	Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices. Linear Algebra and Its Applications, 2004, 387, 1-28.	0.4	115
27	Orthogonal Eigenvectors and Relative Gaps. SIAM Journal on Matrix Analysis and Applications, 2003, 25, 858-899.	0.7	82

28 Diametrical clustering for identifying anti-correlated gene clusters. Bioinformatics, 2003, 19, 1612-1619. $\quad 1.8 \quad 82$
Class visualization of high-dimensional data with applications. Computational Statistics and Data
Analysis, 2002, 41, 59-90.

30 Concept Decompositions for Large Sparse Text Data Using Clustering. , 2001, 42, 143-175.

Relatively robust representations of symmetric tridiagonals. Linear Algebra and Its Applications, 2000, 309, 121-151.

32 Current inverse iteration software can fail. BIT Numerical Mathematics, 1998, 38, 685-704.

[^0]0.7 17

[^0]: Reliable Computation of the Condition Number of a Tridiagonal Matrix in O(n) Time. SIAM Journal on Matrix Analysis and Applications, 1998, 19, 776-796.

