
Kenji Osafune

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1071126/publications.pdf Version: 2024-02-01

KENIL OSAELINE

#	Article	IF	CITATIONS
1	Current status and future directions of clinical applications using iPS cells—focus on Japan. FEBS Journal, 2022, 289, 7274-7291.	4.7	13
2	Stem cells in regenerative processes: Induced pluripotent stem cells. , 2022, , 145-159.		0
3	Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Reports, 2022, 17, 1772-1785.	4.8	9
4	Protocol for the generation and expansion of human iPS cell-derived ureteric bud organoids. STAR Protocols, 2022, 3, 101484.	1.2	4
5	Small molecule TCS21311 can replace BMP7 and facilitate cell proliferation in inÂvitro expansion culture of nephron progenitor cells. Biochemical and Biophysical Research Communications, 2021, 558, 231-238.	2.1	2
6	Ureteric bud structures generated from human iPSCs. , 2021, , 371-395.		0
7	Stem Cells and Kidney Regeneration. , 2021, , 1-27.		0
8	Retinoic acid regulates erythropoietin production cooperatively with hypoxia-inducible factors in human iPSC-derived erythropoietin-producing cells. Scientific Reports, 2021, 11, 3936.	3.3	2
9	Kidney organoids: Research in developmental biology and emerging applications. Development Growth and Differentiation, 2021, 63, 166-177.	1.5	8
10	Regenerative treatments for kidney diseases: The closest and fastest strategies to solving related medical and economic problems. Artificial Organs, 2021, 45, 447-453.	1.9	1
11	iPSC technology-based regenerative medicine for kidney diseases. Clinical and Experimental Nephrology, 2021, 25, 574-584.	1.6	9
12	Identification of candidate PAX2-regulated genes implicated in human kidney development. Scientific Reports, 2021, 11, 9123.	3.3	7
13	Failure to confirm a sodium–glucose cotransporterÂ2 inhibitorâ€induced hematopoietic effect in nonâ€diabetic rats with renal anemia. Journal of Diabetes Investigation, 2020, 11, 834-843.	2.4	4
14	CD140b and CD73 are markers for human induced pluripotent stem cellâ€derived erythropoietinâ€producing cells. FEBS Open Bio, 2020, 10, 427-433.	2.3	1
15	A novel ADPKD model using kidney organoids derived from disease-specific human iPSCs. Biochemical and Biophysical Research Communications, 2020, 529, 1186-1194.	2.1	38
16	PKD1-Dependent Renal Cystogenesis in Human Induced Pluripotent Stem Cell-Derived Ureteric Bud/Collecting Duct Organoids. Journal of the American Society of Nephrology: JASN, 2020, 31, 2355-2371.	6.1	47
17	Expansion of Human iPSC-Derived Ureteric Bud Organoids with Repeated Branching Potential. Cell Reports, 2020, 32, 107963.	6.4	63
18	Combined Omics Approaches Reveal the Roles of Non-canonical WNT7B Signaling and YY1 in the Proliferation of Human Pancreatic Progenitor Cells. Cell Chemical Biology, 2020, 27, 1561-1572.e7.	5.2	12

Kenji Osafune

#	Article	IF	CITATIONS
19	Pluripotent stem cell model of Shwachman–Diamond syndrome reveals apoptotic predisposition of hemoangiogenic progenitors. Scientific Reports, 2020, 10, 14859.	3.3	4
20	A Modular Differentiation System Maps Multiple Human Kidney Lineages from Pluripotent Stem Cells. Cell Reports, 2020, 31, 107476.	6.4	71
21	A nonhuman primate model of liver fibrosis towards cell therapy for liver cirrhosis. Biochemical and Biophysical Research Communications, 2020, 526, 661-669.	2.1	6
22	Genetically engineered pigs manifesting pancreatic agenesis with severe diabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001792.	2.8	2
23	Development of iPS Cell-based Regenerative Medicine for Kidney Diseases. The Journal of the Japanese Society of Internal Medicine, 2020, 109, 2553-2561.	0.0	0
24	Efficient Generation of Pancreas/Duodenum Homeobox Protein 1 ⁺ Posterior Foregut/Pancreatic Progenitors from hPSCs in Adhesion Cultures. Journal of Visualized Experiments, 2019, , .	0.3	0
25	Novel hybrid three-dimensional artificial liver using human induced pluripotent stem cells and a rat decellularized liver scaffold. Regenerative Therapy, 2019, 10, 127-133.	3.0	36
26	Differentiation and isolation of iPSC-derived remodeling ductal plate-like cells by use of an AQP1-GFP reporter human iPSC line. Stem Cell Research, 2019, 35, 101400.	0.7	4
27	Protocol to Generate Ureteric Bud Structures from Human iPS Cells. Methods in Molecular Biology, 2019, 1926, 117-123.	0.9	2
28	A Liver Model of Infantile-Onset Pompe Disease Using Patient-Specific Induced Pluripotent Stem Cells. Frontiers in Cell and Developmental Biology, 2019, 7, 316.	3.7	8
29	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	28.8	230
30	Development of new method to enrich human iPSC-derived renal progenitors using cell surface markers. Scientific Reports, 2018, 8, 6375.	3.3	24
31	<scp>iPSC</scp> technologyâ€based regenerative therapy for diabetes. Journal of Diabetes Investigation, 2018, 9, 234-243.	2.4	62
32	Generation of branching ureteric bud tissues from human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 954-961.	2.1	56
33	Insulinâ€producing cells derived from â€`induced pluripotent stem cells' of patients with fulminant type 1 diabetes: Vulnerability to cytokine insults and increased expression of apoptosisâ€related genes. Journal of Diabetes Investigation, 2018, 9, 481-493.	2.4	26
34	Beta ell replacement strategies for diabetes. Journal of Diabetes Investigation, 2018, 9, 457-463.	2.4	30
35	Identification of a small molecule that facilitates the differentiation of human iPSCs/ESCs and mouse embryonic pancreatic explants into pancreatic endocrine cells. Diabetologia, 2017, 60, 1454-1466.	6.3	19
36	Modelling urea-cycle disorder citrullinemia type 1 with disease-specific iPSCs. Biochemical and Biophysical Research Communications, 2017, 486, 613-619.	2.1	22

Kenji Osafune

#	Article	IF	CITATIONS
37	Human pluripotent stem cell–derived erythropoietin-producing cells ameliorate renal anemia in mice. Science Translational Medicine, 2017, 9, .	12.4	19
38	Small molecule AT7867 proliferates PDX1-expressing pancreatic progenitor cells derived from human pluripotent stem cells. Stem Cell Research, 2017, 24, 61-68.	0.7	15
39	Rho-Associated Kinases and Non-muscle Myosin IIs Inhibit the Differentiation of Human iPSCs to Pancreatic Endoderm. Stem Cell Reports, 2017, 9, 419-428.	4.8	24
40	Adrenergic receptor agonists induce the differentiation of pluripotent stem cell-derived hepatoblasts into hepatocyte-like cells. Scientific Reports, 2017, 7, 16734.	3.3	10
41	Regeneration of Kidney From Human Reprogrammed Stem Cells. , 2017, , 937-955.		0
42	Directing the Differentiation of Pluripotent Stem Cells to Renal End Points. , 2016, , 473-490.		0
43	Redefining definitive endoderm subtypes by robust induction of human induced pluripotent stem cells. Differentiation, 2016, 92, 281-290.	1.9	27
44	Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models. Scientific Reports, 2016, 6, 30013.	3.3	34
45	Novel regenerative therapy for acute kidney injury. Renal Replacement Therapy, 2016, 2, .	0.7	2
46	Translational Research Methods: Renal Stem Cells. , 2016, , 525-569.		0
47	Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Research, 2015, 14, 185-197.	0.7	94
48	Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice. Stem Cells Translational Medicine, 2015, 4, 980-992.	3.3	130
49	Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 394-403.	4.8	260
50	Will it be possible to generate kidney tissue from induced pluripotent stem cells for regenerative therapy?. Regenerative Medicine, 2014, 9, 9-12.	1.7	4
51	Translational Research Methods: Renal Stem Cells. , 2014, , 1-48.		0
52	Cell Therapy for Kidney Injury: Different Options and Mechanisms - Kidney Progenitor Cells. Nephron Experimental Nephrology, 2014, 126, 64-69.	2.2	6
53	A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Scientific Reports, 2014, 4, 3594.	3.3	511
54	Efficient and Rapid Induction of Human iPSCs/ESCs into Nephrogenic Intermediate Mesoderm Using Small Molecule-Based Differentiation Methods. PLoS ONE, 2014, 9, e84881.	2.5	105

KENJI OSAFUNE

#	Article	IF	CITATIONS
55	Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nature Communications, 2013, 4, 1367.	12.8	266
56	Kidney regeneration and disease modeling research using iPS cell technology. Japanese Journal of Pediatric Nephrology, 2013, 26, 64-69.	0.0	0
57	iPS Cell Technology–Based Research for the Treatment of Diabetic Nephropathy. Seminars in Nephrology, 2012, 32, 479-485.	1.6	12
58	In vitro regeneration of kidney from pluripotent stem cells. Experimental Cell Research, 2010, 316, 2571-2577.	2.6	24
59	A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chemical Biology, 2009, 5, 258-265.	8.0	454
60	Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 2008, 26, 313-315.	17.5	764
61	Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development (Cambridge), 2006, 133, 151-161.	2.5	172
62	<i>In vitro</i> induction of the pronephric duct in <i>Xenopus</i> explants. Development Growth and Differentiation, 2002, 44, 161-167.	1.5	88