Dmitriy S Kosyakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/107107/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneous determination of 1,1-dimethylhydrazine and products of its oxidative transformations by liquid chromatography–tandem mass spectrometry. International Journal of Environmental Analytical Chemistry, 2014, 94, 1254-1263.	3.3	39
2	Effects of oxidant and catalyst on the transformation products of rocket fuel 1,1-dimethylhydrazine in water and soil. Chemosphere, 2019, 228, 335-344.	8.2	37
3	Semi volatile organic compounds in the snow of Russian Arctic islands: Archipelago Novaya Zemlya. Environmental Pollution, 2018, 239, 416-427.	7.5	36
4	Negative ion mode atmospheric pressure ionization methods in lignin mass spectrometry: A comparative study. Rapid Communications in Mass Spectrometry, 2016, 30, 2099-2108.	1.5	34
5	Formation of low molecular weight oligomers from chitin and chitosan stimulated by plasma-assisted processes. Carbohydrate Polymers, 2017, 163, 54-61.	10.2	34
6	Characterisation of oxidation products of 1,1-dimethylhydrazine by high-resolution orbitrap mass spectrometry. Chemosphere, 2017, 174, 66-75.	8.2	33
7	Halogenated fatty amides – A brand new class of disinfection by-products. Water Research, 2017, 127, 183-190.	11.3	27
8	Spectrophotometric determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine with preliminary derivatization by 5-nitro-2-furaldehyde. Journal of Analytical Chemistry, 2017, 72, 171-177.	0.9	26
9	Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC-MS. Talanta, 2018, 184, 332-337.	5.5	26
10	Optimization of sample preparation conditions in the study of lignin by MALDI mass spectrometry. Journal of Analytical Chemistry, 2014, 69, 1344-1350.	0.9	25
11	Peat burning – An important source of pyridines in the earth atmosphere. Environmental Pollution, 2020, 266, 115109.	7.5	25
12	Determination of triterpenoids from birch bark by liquid chromatography-tandem mass spectrometry. Journal of Analytical Chemistry, 2014, 69, 1264-1269.	0.9	24
13	Rapid determination of 1,1-dimethylhydrazine transformation products in soil by accelerated solvent extraction coupled with gas chromatography–tandem mass spectrometry. International Journal of Environmental Analytical Chemistry, 2015, 95, 1321-1337.	3.3	24
14	Determination of transformation products of 1,1-dimethylhydrazine by gas chromatography–tandem mass spectrometry. Journal of Analytical Chemistry, 2015, 70, 1553-1560.	0.9	23
15	Direct determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine by zwitterionic hydrophilic interaction liquid chromatography with amperometric detection. International Journal of Environmental Analytical Chemistry, 2017, 97, 313-329.	3.3	23
16	Antiviral drug Umifenovir (Arbidol) in municipal wastewater during the COVID-19 pandemic: Estimated levels and transformation. Science of the Total Environment, 2022, 805, 150380.	8.0	22
17	Identification of novel disinfection byproducts in pool water: Chlorination of the algaecide benzalkonium chloride. Chemosphere, 2020, 239, 124801.	8.2	21
18	Bioprospecting of Less-Polar Constituents from Endemic Brown Macroalga Fucus virsoides J. Agardh from the Adriatic Sea and Targeted Antioxidant Effects In Vitro and In Vivo (Zebrafish Model). Marine Drugs, 2021, 19, 235.	4.6	21

#	Article	IF	CITATIONS
19	lonic liquid matrices for MALDI mass spectrometry of lignin. Analytical and Bioanalytical Chemistry, 2018, 410, 7429-7439.	3.7	20
20	Solvatochromic polarity parameters for binary mixtures of 1-butyl-3-methylimidazolium acetate with water, methanol, and dimethylsulfoxide. Russian Journal of Physical Chemistry A, 2015, 89, 1814-1820.	0.6	19
21	Migration and transformation of 1,1-dimethylhydrazine in peat bog soil of rocket stage fall site in Russian North. Science of the Total Environment, 2020, 726, 138483.	8.0	19
22	Characterization of Disinfection By-Products in Arkhangelsk Tap Water by Liquid Chromatography/High-Resolution Mass Spectrometry. Journal of Analytical Chemistry, 2018, 73, 1260-1268.	0.9	19
23	Quantification of Transformation Products of Unsymmetrical Dimethylhydrazine in Water Using SPME and GC-MS. Chromatographia, 2017, 80, 931-940.	1.3	17
24	Study of Products of the Alkaline Decomposition of Hydrolysis Lignin by Atmospheric Pressure Photoionization High-Resolution Mass Spectrometry. Journal of Analytical Chemistry, 2017, 72, 1396-1403.	0.9	16
25	Evaluation of temperature and pressure effects on retention in supercritical fluid chromatography on polar stationary phases. Journal of Chromatography A, 2020, 1610, 460600.	3.7	16
26	Rapid simultaneous determination of pentacyclic triterpenoids by mixed-mode liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2020, 1609, 460458.	3.7	16
27	Modeling solid-phase microextraction of volatile organic compounds by porous coatings using finite element analysis. Analytica Chimica Acta, 2019, 1076, 73-81.	5.4	15
28	Determination of 1,1-Dimethylhydrazine and its Transformation Products in Soil by Zwitterionic Hydrophilic Interaction Liquid Chromatography/Tandem Mass Spectrometry. Chromatographia, 2018, 81, 891-900.	1.3	14
29	Photolytic and photocatalytic degradation of doxazosin in aqueous solution. Science of the Total Environment, 2020, 740, 140131.	8.0	14
30	Arctic snow pollution: A GC-HRMS case study of Franz Joseph Land archipelago. Environmental Pollution, 2020, 265, 114885.	7.5	13
31	Bio-Based Solvents and Gasoline Components from Renewable 2,3-Butanediol and 1,2-Propanediol: Synthesis and Characterization. Molecules, 2020, 25, 1723.	3.8	12
32	Fractionation of Wood with Binary Solvent 1-Butyl-3-methylimidazolium Acetate + Dimethyl Sulfoxide. Russian Journal of Applied Chemistry, 2018, 91, 663-670.	0.5	11
33	Transformation of resveratrol under disinfection conditions. Chemosphere, 2020, 260, 127557.	8.2	11
34	Characterization of Ionic Liquid Lignins Isolated from Spruce Wood with 1-Butyl-3-methylimidazolium Acetate and Methyl Sulfate and Their Binary Mixtures with DMSO. Molecules, 2020, 25, 2479.	3.8	11
35	Screening and semiâ€quantitative determination of pentacyclic triterpenoids in plants by liquid chromatography–tandem mass spectrometry in precursor ion scan mode. Phytochemical Analysis, 2021, 32, 252-261.	2.4	11
36	Studies of reaction products of hydrolytic lignin with nitric acid. Russian Chemical Bulletin, 2016, 65, 237-244.	1.5	9

#	Article	IF	CITATIONS
37	One-Step Synthesis of Picric Acid from Phenol. Organic Preparations and Procedures International, 2017, 49, 178-181.	1.3	9
38	Modification of sulfate lignin with sodium periodate to obtain sorbent of 1,1-dimethylhydrazine. Russian Journal of Applied Chemistry, 2017, 90, 516-521.	0.5	9
39	Study of Nettle (Urtica dióica) Lignin by Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry. Journal of Analytical Chemistry, 2019, 74, 1412-1420.	0.9	9
40	Study of the sedge (Cárex) lignin by high-resolution mass spectrometry and NMR spectroscopy. Russian Chemical Bulletin, 2020, 69, 2004-2012.	1.5	9
41	Polycyclic aromatic hydrocarbons in the snow cover of the northern city agglomeration. Scientific Reports, 2021, 11, 19074.	3.3	9
42	Some aspects of additives effects on retention in supercritical fluid chromatography studied by linear free energy relationships method. Journal of Chromatography A, 2022, 1665, 462820.	3.7	9
43	Acidity of Guaiacol Derivatives in Water-Acetone Mixtures. Russian Journal of Applied Chemistry, 2005, 78, 125-129.	0.5	8
44	Specific features of sample preparation upon chromatographic determination of 1,1-dimethylhydrazine and N-nitrosodimethylamine in peaty soils. Moscow University Chemistry Bulletin, 2015, 70, 63-68.	0.6	8
45	Determination of natural aromatic acids using supercritical fluid chromatography. Russian Journal of Physical Chemistry B, 2016, 10, 1062-1071.	1.3	8
46	Subcritical extraction of birch bark pentacyclic triterpenes. Russian Chemical Bulletin, 2017, 66, 875-881.	1.5	8
47	Simultaneous Determination of Hydrazine, Methylhydrazine, and 1,1-Dimethylhydrazine by High-Performance Liquid Chromatography with Pre- and Post-Column Derivatization by 5-Nitro-2-Furaldehyde. Journal of Analytical Chemistry, 2018, 73, 497-503.	0.9	8
48	Dopant-assisted atmospheric pressure photoionization Orbitrap mass spectrometry – An approach to molecular characterization of lignin oligomers. Analytica Chimica Acta, 2021, 1179, 338836.	5.4	8
49	Polycyclic aromatic hydrocarbons in the Siberian Arctic seas sediments. Marine Pollution Bulletin, 2022, 180, 113741.	5.0	8
50	Solvent effect on the acidity constants of lignin-related phenols in water-acetone and water-1,4-dioxane binary mixtures within the Kamlet-Taft formalism. Russian Journal of General Chemistry, 2012, 82, 1909-1912.	0.8	7
51	Protolytic properties of lignin in binary mixtures of water with aprotic solvents. Russian Journal of Applied Chemistry, 2013, 86, 1064-1069.	0.5	7
52	Carbon nanocoatings: A new approach to recording mass spectra of low-molecular compounds using surface-assisted laser desorption/ionization mass spectrometry. Journal of Analytical Chemistry, 2016, 71, 1221-1227.	0.9	7
53	Highly Sensitive Determination of Chlorophenols in Sea Water by Gas Chromatographyâ^'Tandem Mass Spectrometry. Journal of Analytical Chemistry, 2018, 73, 991-998.	0.9	7
54	Transformation of Unsymmetrical Dimethylhydrazine in Supercritical Water. Russian Journal of Physical Chemistry B, 2019, 13, 1103-1110.	1.3	7

#	Article	IF	CITATIONS
55	Depolymerization of Alkaline Lignin in the Medium of Supercritical 2-Propanol. Russian Journal of Applied Chemistry, 2020, 93, 99-107.	0.5	7
56	Supercritical Fluid Chromatography—Tandem Mass Spectrometry for Rapid Quantification of Pentacyclic Triterpenoids in Plant Extracts. Pharmaceuticals, 2022, 15, 629.	3.8	7
57	Determination of Ni, Co, and Cu in seawater by total external reflection X-ray fluorescence spectrometry. Journal of Analytical Chemistry, 2017, 72, 608-616.	0.9	6
58	Data on the spatial distribution of 1,1-dimethylhydrazine and its transformation products in peat bog soil of rocket stage fall site in Russian North. Data in Brief, 2020, 30, 105614.	1.0	6
59	Rapid quantification and screening of nitrogen-containing rocket fuel transformation products by vortex assisted liquid-liquid microextraction and gas chromatography – high-resolution Orbitrap mass spectrometry. Microchemical Journal, 2021, 171, 106821.	4.5	6
60	Chitosan Plasma Chemical Processing in Beam-Plasma Reactors as a Way of Environmentally Friendly Phytostimulants Production. Processes, 2021, 9, 103.	2.8	6
61	Solvatochromism and preferential solvation of para-derivatives of guaiacol in water-N,N-dimethylformamide mixtures. Russian Journal of Physical Chemistry A, 2007, 81, 1076-1081.	0.6	5
62	Supercritical fluid extraction of 1,1-dimethylhydrazine from peaty soils. Russian Journal of Physical Chemistry B, 2013, 7, 880-884.	1.3	5
63	Using a Stationary Phase Based on Porous Graphitized Carbon for the Determination of 1,1-Dimethylhydrazine Transformation Products by Liquid Chromatography–Mass Spectrometry. Journal of Analytical Chemistry, 2020, 75, 510-518.	0.9	5
64	Occurrence of Volatile and Semi-Volatile Organic Pollutants in the Russian Arctic Atmosphere: The International Siberian Shelf Study Expedition (ISSS-2020). Atmosphere, 2021, 12, 767.	2.3	5
65	Gas Chromatography–Mass Spectrometry Quantification of 1,1-Dimethylhydrazine Transformation Products in Aqueous Solutions: Accelerated Water Sample Preparation. Molecules, 2021, 26, 5743.	3.8	5
66	Laser Desorption/Ionization of Low-Molecular-Weight Lignin Oligomers. Journal of Analytical Chemistry, 2020, 75, 1814-1824.	0.9	5
67	Features of the Chemical Composition and Structure of Birch Phloem Dioxane Lignin: A Comprehensive Study. Polymers, 2022, 14, 964.	4.5	5
68	A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography. Journal of Chromatography A, 2017, 1479, 177-184.	3.7	4
69	Study of the Products of Oxidation of 1,1-Dimethylhydrazine by Nitrogen Dioxide in an Aqueous Solution by High-Resolution Mass Spectrometry. Journal of Analytical Chemistry, 2018, 73, 1223-1228.	0.9	4
70	Simultaneous Determination of Anthraquinone and Bisphenol A in Pulp and Paper Products by High Performance Liquid Chromatography‒Tandem Mass Spectrometry. Journal of Analytical Chemistry, 2019, 74, 1089-1095.	0.9	4
71	Application of Carbon Matrices to Screening Pentacylic Triterpenoids in Plant Feedstock by MALDI Mass Spectrometry. Journal of Analytical Chemistry, 2020, 75, 1749-1757.	0.9	4
72	Study of Lignin by Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry: Effect of Spectral Resolution. Journal of Analytical Chemistry, 2021, 76, 1610-1617.	0.9	4

#	Article	IF	CITATIONS
73	Application of analytical methods for estimating contamination of atmospheric air during launch of carrier rockets of different classes from the Plesetsk Cosmodrome. Inorganic Materials, 2010, 46, 1627-1631.	0.8	3
74	Synthesis of 2,4-dinitrophenol. Russian Journal of Applied Chemistry, 2012, 85, 1577-1580.	0.5	3
75	Thermochemical structural transformations of polyoxadiazoles. Russian Journal of Applied Chemistry, 2015, 88, 1304-1310.	0.5	3
76	Thermophysical properties of model compounds of the lignin structural unit. Russian Chemical Bulletin, 2016, 65, 2504-2508.	1.5	3
77	Promising Solvents for Lignin Depolymerization: Stability under Supercritical Conditions. Russian Journal of Physical Chemistry B, 2019, 13, 1147-1149.	1.3	3
78	Acidity Constants of Lignin Model Compounds in the Electronically Excited State in Water–N,N-Dimethylformamide Mixtures. Russian Journal of Physical Chemistry A, 2020, 94, 1587-1595.	0.6	3
79	New Fe–Cu bimetallic coordination compounds based on ω-ferrocene carboxylic acids and 2-thioimidazol-4-ones: structural, mechanistic and biological studies. Inorganic Chemistry Frontiers, 2021, 8, 4730-4750.	6.0	3
80	Quadrupole Ion Trap Time-of-Flight MALDI Mass Spectrometry: Hydration of Ions of Hydroxyl-Containing Compounds. Journal of Analytical Chemistry, 2019, 74, 1390-1395.	0.9	3
81	Specific features of solvation of lignin related phenols in the binary mixtures of water with dimethyl sulfoxide, 1,4-dioxane, and acetonitrile. Russian Chemical Bulletin, 2014, 63, 2045-2050.	1.5	2
82	The Properties of the Nucleodur HILIC Stationary Phase in Supercritical Fluid Chromatography. Russian Journal of Physical Chemistry A, 2018, 92, 793-798.	0.6	2
83	Study of the Composition of Volatile By-Products, Formed by Dissolution of Wood in Ionic Liquids Based on 1-Butyl-3-Methylimidazolium. Russian Journal of Applied Chemistry, 2021, 94, 337-346.	0.5	2
84	Mass spectrometry in the study of air pollution in the Arctic. , 2020, 13, 56-68.		2
85	Comparative Analysis of Lignins of Various Plant Forms by 31P NMR Spectroscopy. Russian Journal of Bioorganic Chemistry, 2020, 46, 1337-1342.	1.0	2
86	Supercritical Fluid Chromatography–Mass-Spectrometry of Nitrogen-Containing Compounds: Atmospheric Pressure Ionization. Journal of Analytical Chemistry, 2021, 76, 1624-1634.	0.9	2
87	An IR study of organosolvent lignin. Russian Journal of Applied Chemistry, 2004, 77, 1536-1539.	0.5	1
88	Nitration of phenol in 1,4-dioxane. Russian Journal of Applied Chemistry, 2015, 88, 1783-1787.	0.5	1
89	The Study of Water Sorption with Hydrolysis Lignin by Solid-State NMR Spectroscopy. Eurasian Chemico-Technological Journal, 2019, 21, 325.	0.6	1
90	Application of Atmospheric Pressure Photoionization to the Determination of 1,1-Dimethylhydrazine Transformation Products by Liquid Chromatography/Mass Spectrometry. Journal of Analytical Chemistry, 2020, 75, 1700-1707.	0.9	1

#	Article	IF	CITATIONS
91	A study of the photometric reaction of phenol nitrosation. Russian Journal of Applied Chemistry, 2013, 86, 836-840.	0.5	0
92	Lignopolyurethane foam based on hydrolytic lignin. Russian Journal of Applied Chemistry, 2016, 89, 155-159.	0.5	0
93	Thermophysical Properties of Ionic Liquids with 1-Butyl-3-methylimidazolium Cation. Russian Journal of Physical Chemistry A, 2020, 94, 1756-1760.	0.6	Ο
94	Vitamin K1 levels in the umbilical cord blood ofÂneonates in Arkhangelsk. Rossiyskiy Vestnik Perinatologii l Pediatrii, 2017, 62, 49-53.	0.3	0
95	Transformation of Vanillin in Sub- and Supercritical Propanol-2 Media. Russian Journal of Physical Chemistry B, 2021, 15, 1113-1119.	1.3	Ο
96	The development of total organic carbon determination method in the sea water. , 2022, , 97-101.		0