
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1071017/publications.pdf Version: 2024-02-01



3

| #  | Article                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | HERMES: Heuristic Multi-queue Scheduler for TSN Time-Triggered Traffic with Zero Reception Jitter<br>Capabilities. , 2022, , .                          |      | 9         |
| 2  | CSRP: An Enhanced Protocol for Consistent Reservation of Resources in AVB/TSN. IEEE Transactions on Industrial Informatics, 2021, 17, 3640-3650.        | 11.3 | 0         |
| 3  | Design and Experimental Evaluation of the Proactive Transmission of Replicated Frames Mechanism over Time-Sensitive Networking. Sensors, 2021, 21, 756. | 3.8  | 8         |
| 4  | Exploring the use of Deep Reinforcement Learning to allocate tasks in Critical Adaptive Distributed Embedded Systems. , 2021, , .                       |      | 2         |
| 5  | LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic Classes. , 2021, , .                                                                      |      | 6         |
| 6  | Reliability Analysis of the Proactive Transmission of Replicated Frames Mechanism over Time-Sensitive Networking. Sensors, 2021, 21, 8427.              | 3.8  | 1         |
| 7  | Correction to "Comparing Admission Control Architectures for Real-Time Ethernetâ€, IEEE Access, 2020, 8, 136260-136260.                                 | 4.2  | 0         |
| 8  | Clock Synchronization in Integrated TSN-EtherCAT Networks. , 2020, , .                                                                                  |      | 4         |
| 9  | Comparing Admission Control Architectures for Real-Time Ethernet. IEEE Access, 2020, 8, 105521-105534.                                                  | 4.2  | 7         |
| 10 | An Architecture for Highly Reliable Fault-Tolerant Adaptive Distributed Embedded Systems. Computer, 2020, 53, 38-46.                                    | 1.1  | 6         |
| 11 | Analysing Termination and Consistency in the AVBâ $\in$ ™s Stream Reservation Protocol. , 2019, , .                                                     |      | 1         |
| 12 | Fault Tolerance in Highly Reliable Ethernet-Based Industrial Systems. Proceedings of the IEEE, 2019, 107, 977-1010.                                     | 21.3 | 15        |
| 13 | A Fault-Tolerant Ethernet for Hard Real-Time Adaptive Systems. IEEE Transactions on Industrial<br>Informatics, 2019, 15, 2980-2991.                     | 11.3 | 11        |
| 14 | Formal Verification of the FTTRS Mechanisms for the Consistent Update of the Traffic Schedule. , 2019, , .                                              |      | 0         |
| 15 | First exploration of the potential of diverse training and voting for increasing the accuracy of CNNs. , 2019, , .                                      |      | 0         |
| 16 | Simulation of the Proactive Transmission of Replicated Frames Mechanism over TSN. , 2019, , .                                                           |      | 7         |
| 17 | Temporal Replication of Messages for Adaptive Systems using a Holistic Approach. , 2019, , .                                                            |      | 1         |
|    |                                                                                                                                                         |      |           |

18 Towards a Fault-Tolerant Architecture Based on Time Sensitive Networking. , 2018, , .

2

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Reconfiguration Strategies for Critical Adaptive Distributed Embedded Systems. , 2018, , .                                                                                          |      | 4         |
| 20 | Mixing Time and Spatial Redundancy Over Time Sensitive Networking. , 2018, , .                                                                                                      |      | 4         |
| 21 | Towards a time redundancy mechanism for critical frames in time-sensitive networking. , 2017, , .                                                                                   |      | 16        |
| 22 | Towards a dynamic task allocation scheme for highly-reliable adaptive distributed embedded systems. ,<br>2017, , .                                                                  |      | 3         |
| 23 | A first qualitative comparison of the admission control in FTT-SE, HaRTES and AVB. , 2016, , .                                                                                      |      | 3         |
| 24 | Guest Editorial Special Section on Communication in Automation. IEEE Transactions on Industrial Informatics, 2016, 12, 1817-1821.                                                   | 11.3 | 14        |
| 25 | Improving maintenance of FT4FTT: Extending it to monitor and log its available redundancy via internet. , 2016, , .                                                                 |      | 1         |
| 26 | First implementation and test of reintegration mechanisms for node replicas in the FT4FTT Architecture. , 2016, , .                                                                 |      | 0         |
| 27 | A first performance analysis of the Admission Control in the HaRTES Ethernet switch. , 2016, , .                                                                                    |      | 1         |
| 28 | Designing fault-diagnosis and reintegration to prevent node redundancy attrition in highly reliable control systems based on FTT-Ethernet. , 2016, , .                              |      | 5         |
| 29 | First implementation and test of a node replication scheme on top of the flexible time-triggered replicated star for ethernet. , 2016, , .                                          |      | 2         |
| 30 | Towards a layered architecture for the Flexible Time-Triggered Replicated Star for Ethernet. , 2015, , .                                                                            |      | 1         |
| 31 | An OMNET++ model to asses node fault-tolerance mechanisms for FTT-Ethernet DESs. , 2015, , .                                                                                        |      | 1         |
| 32 | First experimental evaluation of the consistent replicated voting in the hard real-time ethernet switching architecture. , 2015, , .                                                |      | 1         |
| 33 | 11th WFCS 2015 on a Mediterranean Island [Society News]. IEEE Industrial Electronics Magazine, 2015, 9,<br>51-52.                                                                   | 2.6  | 0         |
| 34 | Quantitative characterization of the reliability of simplex buses and stars to compare their benefits in fieldbuses. Reliability Engineering and System Safety, 2015, 138, 163-175. | 8.9  | 5         |
| 35 | Experimental evaluation of network component crashes and trigger message omissions in the Flexible<br>Time-Triggered Replicated Star for Ethernet. , 2015, , .                      |      | 3         |
| 36 | Towards an experimental assessment of the slave elementary cycle synchronization in the Flexible<br>Time-Triggered Replicated Star for Ethernet. , 2014, , .                        |      | 3         |

4

| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | A model for quantifying the reliability of highly-reliable distributed systems based on fieldbus replicated buses. , 2014, , .                                |      | 3         |
| 38 | Towards extending the OMNeT++ INET framework for simulating fault injection in ethernet-based Flexible Time-Triggered systems. , 2014, , .                    |      | 6         |
| 39 | Using FTT-ethernet for the coordinated dispatching of tasks and messages for node replication. , 2014, , ,                                                    |      | 5         |
| 40 | Towards a reliability analysis of the design space for the communication subsystem of FT4FTT. , 2014, , .                                                     |      | 4         |
| 41 | Achieving elementary cycle synchronization between masters in the flexible time-triggered replicated star for ethernet. , 2014, , .                           |      | 4         |
| 42 | sfiCAN: A Star-Based Physical Fault-Injection Infrastructure for CAN Networks. IEEE Transactions on Vehicular Technology, 2014, 63, 1335-1349.                | 6.3  | 10        |
| 43 | A proposal for managing the redundancy provided by the flexible time-triggered replicated star for ethernet. , 2014, , .                                      |      | 10        |
| 44 | A proposal for master replica control in the flexible time-triggered replicated star for ethernet. , 2014, , .                                                |      | 8         |
| 45 | Appropriate consistent replicated voting for increased reliability in a node replication scheme over FTT. , 2014, , .                                         |      | 7         |
| 46 | Using Timed Automata for Modeling Distributed Systems with Clocks: Challenges and Solutions. IEEE<br>Transactions on Software Engineering, 2013, 39, 857-868. | 5.6  | 20        |
| 47 | Towards Efficient Probabilistic Scheduling Guarantees for Real-Time Systems Subject to Random<br>Errors and Random Bursts of Errors. , 2013, , .              |      | 10        |
| 48 | Towards a Flexible Time-Triggered replicated star for ethernet. , 2013, , .                                                                                   |      | 15        |
| 49 | Towards preventing error propagation in a real-time Ethernet switch. , 2013, , .                                                                              |      | 8         |
| 50 | Towards dynamic fault tolerance on FTT-based distributed embedded systems. , 2013, , .                                                                        |      | 1         |
| 51 | Design and Verification of a Media Redundancy Management Driver for a CAN Star Topology. IEEE<br>Transactions on Industrial Informatics, 2013, 9, 237-245.    | 11.3 | 8         |
| 52 | A proposal for flexible, real-time and consistent multicast in FTT/HaRTES Switched Ethernet. , 2013, , .                                                      |      | 7         |
| 53 | Developing TOBE-CAN: Total order broadcast enforcement in CAN. , 2012, , .                                                                                    |      | 0         |
|    |                                                                                                                                                               |      |           |

54 Probabilistic scheduling guarantees in distributed real-time systems under error bursts. , 2012, , .

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | A first qualitative evaluation of star replication schemes for FTT-CAN. , 2012, , .                                                                                            |      | 0         |
| 56 | Using FTT and stars to simplify node replication in CAN-based systems. , 2012, , .                                                                                             |      | 3         |
| 57 | The design of the CANbids architecture. , 2012, , .                                                                                                                            |      | 16        |
| 58 | Quantitative Comparison of the Error-Containment Capabilities of a Bus and a Star Topology in CAN<br>Networks. IEEE Transactions on Industrial Electronics, 2011, 58, 802-813. | 7.9  | 40        |
| 59 | Towards the integration of flexible-time-triggered communication and replicated star topologies in CAN. , 2011, , .                                                            |      | 0         |
| 60 | Designing sfiCAN: A star-based physical fault injector for CAN. , 2011, , .                                                                                                    |      | 1         |
| 61 | Towards understanding the sensitivity of the reliability achievable by simplex and replicated star topologies in CAN. , 2011, , .                                              |      | 3         |
| 62 | Injection of aggregated error flags as a means to guarantee consistent error detection in CAN. , 2011, ,                                                                       |      | 3         |
| 63 | Guest Editorial Special Section on Industrial Communication Systems. IEEE Transactions on Industrial<br>Informatics, 2010, 6, 365-368.                                         | 11.3 | 11        |
| 64 | Reliability improvement achievable in CAN-based systems by means of the ReCANcentrate replicated star topology. , 2010, , .                                                    |      | 7         |
| 65 | First prototype and experimental assessment of media management in ReCANcentrate. , 2010, , .                                                                                  |      | 2         |
| 66 | Using Timed Automata for Modeling the Clocks of Distributed Embedded Systems. , 2010, , 172-193.                                                                               |      | 1         |
| 67 | Demonstrating the feasibility of media management in ReCANcentrate. , 2009, , .                                                                                                |      | 1         |
| 68 | First quantitative results of the dependability improvement achieved by ReCANcentrate. , 2009, , .                                                                             |      | 1         |
| 69 | A first design for CANsistant: A mechanism to prevent inconsistent omissions in CAN in the presence of multiple errors. , 2009, , .                                            |      | 4         |
| 70 | Boosting the Robustness of Controller Area Networks: CANcentrate and ReCANcentrate. Computer, 2009, 42, 66-73.                                                                 | 1.1  | 13        |
| 71 | Managing redundancy in CAN-based networks supporting N-Version Programming. Computer<br>Standards and Interfaces, 2009, 31, 120-127.                                           | 5.4  | 5         |
| 72 | Analytical Assessment of the Precision Degradation Caused by Faults in a Fault-Tolerant Master/Slave<br>Clock Synchronization Service for CAN. , 2008, , .                     |      | 0         |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Maintaining data consistency in ReCANcentrate during hub decouplings. , 2008, , .                                                                                                         |      | Ο         |
| 74 | Orthogonal, Fault-Tolerant, and High-Precision Clock Synchronization for the Controller Area<br>Network. IEEE Transactions on Industrial Informatics, 2008, 4, 92-101.                    | 11.3 | 31        |
| 75 | Designing and verifying media management in ReCANcentrate. , 2008, , .                                                                                                                    |      | 4         |
| 76 | Dependable Automotive CAN Networks. Industrial Information Technology Series, 2008, , 130-181.                                                                                            | 0.2  | 5         |
| 77 | Modelling MajorCAN with UPPAAL. , 2007, , .                                                                                                                                               |      | 2         |
| 78 | Modeling and Verification of Master/Slave Clock Synchronization Using Hybrid Automata and Model-Checking. Lecture Notes in Computer Science, 2007, , 307-326.                             | 1.3  | 1         |
| 79 | An Active Star Topology for Improving Fault Confinement in CAN Networks. IEEE Transactions on Industrial Informatics, 2006, 2, 78-85.                                                     | 11.3 | 57        |
| 80 | Experimental Assessment of ReCANcentrate, a Replicated Star Topology for CAN. , 2006, , .                                                                                                 |      | 4         |
| 81 | Combining Operational Flexibility and Dependability in FTT-CAN. IEEE Transactions on Industrial Informatics, 2006, 2, 95-102.                                                             | 11.3 | 36        |
| 82 | Hardware design of a high-precision and fault-tolerant clock subsystem for CAN networks. IFAC<br>Postprint Volumes IPPV / International Federation of Automatic Control, 2003, 36, 39-46. | 0.4  | 8         |
| 83 | Analyzing atomic broadcast in TTCAN networks. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 2003, 36, 147-150.                                          | 0.4  | 2         |
| 84 | A low-cost fail-safe circuit for fault-tolerant control systems. , 0, , .                                                                                                                 |      | 4         |
| 85 | A cost-effective hardware architecture for fail-safe autonomous underwater vehicles. , 0, , .                                                                                             |      | 3         |
| 86 | Hardware support for fault tolerance in triple redundant CAN controllers. , 0, , .                                                                                                        |      | 8         |
| 87 | Design and implementation of a redundancy manager for triple redundant CAN controllers. , 0, , .                                                                                          |      | 3         |
| 88 | An architecture for physical injection of complex fault scenarios in CAN networks. , 0, , .                                                                                               |      | 11        |
| 89 | COTS-based hardware support to timeliness in CAN networks. , 0, , .                                                                                                                       |      | 0         |