Philip A Rea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10709755/publications.pdf

Version: 2024-02-01

		70961	1	189595	
53	7,196	41		50	
papers	citations	h-index		g-index	
55	55	55		5709	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Plant ABC proteins – a unified nomenclature and updated inventory. Trends in Plant Science, 2008, 13, 151-159.	4.3	652
2	Arsenic tolerance in <i>Arabidopsis</i> is mediated by two ABCC-type phytochelatin transporters. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21187-21192.	3.3	555
3	The Arabidopsis thaliana ABC Protein Superfamily, a Complete Inventory. Journal of Biological Chemistry, 2001, 276, 30231-30244.	1.6	484
4	Plant ATP-Binding Cassette Transporters. Annual Review of Plant Biology, 2007, 58, 347-375.	8.6	437
5	The Yeast Cadmium Factor Protein (YCF1) Is a Vacuolar Glutathione S-Conjugate Pump. Journal of Biological Chemistry, 1996, 271, 6509-6517.	1.6	406
6	Mechanism of Heavy Metal Ion Activation of Phytochelatin (PC) Synthase. Journal of Biological Chemistry, 2000, 275, 31451-31459.	1.6	346
7	Tonoplast energization: Two H+ pumps, one membrane. Physiologia Plantarum, 1987, 71, 131-141.	2.6	320
8	FROM VACUOLAR GS-X PUMPS TO MULTISPECIFIC ABC TRANSPORTERS. Annual Review of Plant Biology, 1998, 49, 727-760.	14.2	292
9	Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Journal, 2003, 35, 675-692.	2.8	286
10	AtMRP2, an Arabidopsis ATP Binding Cassette Transporter Able to Transport Glutathione S-Conjugates and Chlorophyll Catabolites: Functional Comparisons with AtMRP1. Plant Cell, 1998, 10, 267-282.	3.1	255
11	A New Pathway for Heavy Metal Detoxification in Animals. Journal of Biological Chemistry, 2001, 276, 20817-20820.	1.6	206
12	Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiology, 1985, 77, 46-52.	2.3	174
13	The protein storage vacuole. Journal of Cell Biology, 2001, 155, 991-1002.	2.3	169
14	MRP subfamily ABC transporters from plants and yeast. Journal of Experimental Botany, 1999, 50, 895-913.	2.4	164
15	The GS-X Pump in Plant, Yeast, and Animal Cells: Structure, Function, and Gene Expression. Bioscience Reports, 1997, 17, 189-207.	1.1	143
16	Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends in Biochemical Sciences, 1992, 17, 348-353.	3.7	142
17	AtMRP2, and Arabidopsis ATP Binding Cassette Transporter Able to Transport Glutathione S-Conjugates and Chlorophyll Catabolites: Functional Comparisons with AtMRP1. Plant Cell, 1998, 10, 267.	3.1	140
18	Enhanced Multispecificity of Arabidopsis Vacuolar Multidrug Resistance-associated Protein-type ATP-binding Cassette Transporter, AtMRP2. Journal of Biological Chemistry, 2001, 276, 8648-8656.	1.6	129

#	Article	IF	CITATIONS
19	Phytochelatin Synthase, a Dipeptidyltransferase That Undergoes Multisite Acylation with Î ³ -Glutamylcysteine during Catalysis. Journal of Biological Chemistry, 2004, 279, 22449-22460.	1.6	127
20	Weeds, Worms, and More. Papain's Long-Lost Cousin, Phytochelatin Synthase. Plant Physiology, 2004, 136, 2463-2474.	2.3	119
21	Chromatographic Resolution of H+-Translocating Pyrophosphatase from H+-Translocating ATPase of Higher Plant Tonoplast. Plant Physiology, 1986, 81, 126-129.	2.3	98
22	AVP2, a Sequence-Divergent, K+-Insensitive H+-Translocating Inorganic Pyrophosphatase from Arabidopsis. Plant Physiology, 2000, 123, 353-362.	2.3	97
23	Localization, Regulation, and Substrate Transport Properties of Bpt1p, a Saccharomyces cerevisiae MRP-Type ABC Transporter. Eukaryotic Cell, 2002, 1, 391-400.	3.4	92
24	Phytochelatin synthase: of a protease a peptide polymerase made. Physiologia Plantarum, 2012, 145, 154-164.	2.6	91
25	Alternate Energy-Dependent Pathways for the Vacuolar Uptake of Glucose and Glutathione Conjugates. Plant Physiology, 2002, 130, 1562-1572.	2.3	83
26	CeHMT-1, a Putative Phytochelatin Transporter, Is Required for Cadmium Tolerance in Caenorhabditis elegans. Journal of Biological Chemistry, 2005, 280, 23684-23690.	1.6	82
27	Vacuolar uptake of the phytoalexin medicarpin by the glutathione conjugate pump. Phytochemistry, 1997, 45, 689-693.	1.4	81
28	Site-directed Mutagenesis of Vacuolar H+-pyrophosphatase. Journal of Biological Chemistry, 1995, 270, 2630-2635.	1.6	79
29	Functional Characterization of AtATM1, AtATM2, and AtATM3, a Subfamily of Arabidopsis Half-molecule ATP-binding Cassette Transporters Implicated in Iron Homeostasis. Journal of Biological Chemistry, 2007, 282, 21561-21571.	1.6	76
30	Steady-state kinetics of substrate hydrolysis by vacuolar H+-pyrophosphatase. A simple three-state model. FEBS Journal, 1993, 217, 755-762.	0.2	73
31	A thermostable vacuolar-type membrane pyrophosphatase from the archaeonPyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps. FEBS Letters, 1999, 460, 505-512.	1.3	67
32	Common Identity of Substrate Binding Subunit of Vacuolar H+-Translocating Inorganic Pyrophosphatase of Higher Plant Cells. Plant Physiology, 1992, 100, 723-732.	2.3	66
33	Mutagenic Definition of a Papain-Like Catalytic Triad, Sufficiency of the N-Terminal Domain for Single-Site Core Catalytic Enzyme Acylation, and C-Terminal Domain for Augmentative Metal Activation of a Eukaryotic Phytochelatin Synthase. Plant Physiology, 2006, 141, 858-869.	2.3	65
34	Irreversible inhibition of H+-ATPase of higher plant tonoplast by chaotropic anions: evidence for peripheral location of nucleotide-binding subunits. Biochimica Et Biophysica Acta - Biomembranes, 1987, 904, 1-12.	1.4	64
35	Identification and purification of substrate-binding subunit of higher plant H+-translocating inorganic pyrophosphatase. FEBS Letters, 1989, 256, 200-206.	1.3	59
36	Drosophila ABC Transporter, DmHMT-1, Confers Tolerance to Cadmium. Journal of Biological Chemistry, 2009, 284, 354-362.	1.6	54

#	Article	IF	Citations
37	Plant Vacuolar ATP-binding Cassette Transporters That Translocate Folates and Antifolates in Vitro and Contribute to Antifolate Tolerance in Vivo. Journal of Biological Chemistry, 2009, 284, 8449-8460.	1.6	52
38	Mechanism of Stimulation and Inhibition of Tonoplast H ⁺ -ATPase of <i>Beta vulgaris</i> by Chloride and Nitrate. Plant Physiology, 1986, 81, 120-125.	2.3	48
39	Worms take the †phyto' out of †phytochelatins'. Trends in Biotechnology, 2002, 20, 61-64.	4.9	48
40	Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS Letters, 1993, 327, 199-202.	1.3	45
41	Regulation of Vacuolar H ⁺ -Pyrophosphatase by Free Calcium. Plant Physiology, 1992, 100, 1706-1715.	2.3	43
42	Analysis of the vacuolar luminal proteome of <i>Saccharomyces cerevisiae</i> . FEBS Journal, 2007, 274, 4287-4305.	2.2	33
43	Phytochelatin synthase, papain's cousin, in stereo. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 507-508.	3.3	30
44	Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance. Journal of Biological Chemistry, 2015, 290, 17321-17330.	1.6	26
45	Do plants have more genes than humans? Yes, when it comes to ABC proteins. Trends in Plant Science, 2001, 6, 347-348.	4.3	23
46	Ion genomics. Nature Biotechnology, 2003, 21, 1149-1151.	9.4	20
47	Tonoplast Adenosine Triphosphatase and Inorganic Pyrophosphatase. Methods in Plant Biochemistry, 1990, 3, 385-405.	0.2	20
48	Oxygen exchange reactions catalyzed by vacuolar H+-translocating pyrophosphatase Evidence for reversible formation of enzyme-bound pyrophosphate. FEBS Letters, 1994, 350, 323-327.	1.3	11
49	THE PLANT ABC TRANSPORTER SUPERFAMILY: THE FUNCTIONS OF A FEW AND IDENTITIES OF MANY. , 2003, , 335-355.		9
50	A farewell to bacterial ARMs?. Nature Biotechnology, 2005, 23, 1085-1087.	9.4	5
51	Detoxification of xenobiotics revisited. Trends in Plant Science, 1997, 2, 290-291.	4.3	3
52	Transport of H+, K+ and Ca2+ at the vacuolar membrane of plants., 0,, 169-188.		2
53	Vacuolar H+-translocating Inorganic Pyrophosphatase: Biochemistry and Molecular Biology. , 1992, , 25-38.		2