
David Kadosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1070917/publications.pdf Version: 2024-02-01

Πλυίο Κλοοςμ

#	Article	IF	CITATIONS
1	Post-transcriptional control of antifungal resistance in human fungal pathogens. Critical Reviews in Microbiology, 2023, 49, 469-484.	2.7	3
2	Rapid Proliferation Compensates for Defective Filamentation in Candida albicans Pathogenesis. Trends in Microbiology, 2021, 29, 867-868.	3.5	0
3	Global translational landscape of the <i>Candida albicans</i> morphological transition. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	8
4	A Re-Evaluation of the Relationship between Morphology and Pathogenicity in Candida Species. Journal of Fungi (Basel, Switzerland), 2020, 6, 13.	1.5	22
5	Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Current Opinion in Microbiology, 2019, 52, 27-34.	2.3	46
6	Filamentation Is Associated with Reduced Pathogenicity of Multiple Non- <i>albicans Candida</i> Species. MSphere, 2019, 4, .	1.3	17
7	Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. MSphere, 2019, 4, .	1.3	18
8	Morphogenesis in C. albicans. , 2017, , 41-62.		7
9	Effect of Antifungal Treatment in a Diet-Based Murine Model of Disseminated Candidiasis Acquired via the Gastrointestinal Tract. Antimicrobial Agents and Chemotherapy, 2016, 60, 6703-6708.	1.4	15
10	Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms. Cellular and Molecular Life Sciences, 2016, 73, 4265-4278.	2.4	32
11	Regulatory roles of phosphorylation in model and pathogenic fungi. Medical Mycology, 2016, 54, 333-352.	0.3	25
12	<i>Candida albicans</i> colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cellular Microbiology, 2015, 17, 445-450.	1.1	66
13	Filament Condition-Specific Response Elements Control the Expression of NRG1 and UME6, Key Transcriptional Regulators of Morphology and Virulence in Candida albicans. PLoS ONE, 2015, 10, e0122775.	1.1	20
14	A 5′ <scp>UTR</scp> â€mediated translational efficiency mechanism inhibits the <scp><i>C</i></scp> <i>andida albicans</i> morphological transition. Molecular Microbiology, 2014, 92, 570-585.	1.2	39
15	Ppg1, a PP2A-Type Protein Phosphatase, Controls Filament Extension and Virulence in Candida albicans. Eukaryotic Cell, 2014, 13, 1538-1547.	3.4	14
16	Expression of <i>UME6</i> , a Key Regulator of Candida albicans Hyphal Development, Enhances Biofilm Formation via Hgc1- and Sun41-Dependent Mechanisms. Eukaryotic Cell, 2013, 12, 224-232.	3.4	68
17	Candida albicans: Adapting to Succeed. Cell Host and Microbe, 2013, 14, 483-485.	5.1	30
18	Comparative Evolution of Morphological Regulatory Functions in Candida Species. Eukaryotic Cell, 2013, 12, 1356-1368.	3.4	55

David Kadosh

#	Article	IF	CITATIONS
19	Shaping Up for Battle: Morphological Control Mechanisms in Human Fungal Pathogens. PLoS Pathogens, 2013, 9, e1003795.	2.1	18
20	A genome-wide transcriptional analysis of morphology determination in <i>Candida albicans</i> . Molecular Biology of the Cell, 2013, 24, 246-260.	0.9	52
21	Coevolution of Morphology and Virulence in Candida Species. Eukaryotic Cell, 2011, 10, 1173-1182.	3.4	164
22	Candida albicans Ume6, a Filament-Specific Transcriptional Regulator, Directs Hyphal Growth via a Pathway Involving Hgc1 Cyclin-Related Protein. Eukaryotic Cell, 2010, 9, 1320-1328.	3.4	52
23	Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle. PLoS Pathogens, 2010, 6, e1000828.	2.1	359
24	Expression levels of a filament-specific transcriptional regulator are sufficient to determine <i>Candida albicans</i> morphology and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 599-604.	3.3	191
25	<i>UME6</i> , a Novel Filament-specific Regulator of <i>Candida albicans</i> Hyphal Extension and Virulence. Molecular Biology of the Cell, 2008, 19, 1354-1365.	0.9	215
26	Induction of theCandida albicansFilamentous Growth Program by Relief of Transcriptional Repression: A Genome-wide Analysis. Molecular Biology of the Cell, 2005, 16, 2903-2912.	0.9	260
27	Rfg1, a Protein Related to the Saccharomyces cerevisiae Hypoxic Regulator Rox1, Controls Filamentous Growth and Virulence in Candida albicans. Molecular and Cellular Biology, 2001, 21, 2496-2505.	1.1	154
28	Targeted Recruitment of the Sin3-Rpd3 Histone Deacetylase Complex Generates a Highly Localized Domain of Repressed Chromatin In Vivo. Molecular and Cellular Biology, 1998, 18, 5121-5127.	1.1	283
29	Repression by Ume6 Involves Recruitment of a Complex Containing Sin3 Corepressor and Rpd3 Histone Deacetylase to Target Promoters. Cell, 1997, 89, 365-371.	13.5	531
30	The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. Nature, 1996, 384, 589-591.	13.7	232