Götz Schroth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10708982/publications.pdf Version: 2024-02-01

<u>Cöτ7 Schpoth</u>

#	Article	IF	CITATIONS
1	Disentangling the factors that shape bromeliad and ant communities in the canopies of cocoa agroforestry and preserved Atlantic Forest. Biotropica, 2021, 53, 1698-1709.	1.6	0
2	Copper fertilization in soybean–wheat intercropping under no–till management. Soil and Tillage Research, 2019, 193, 133-141.	5.6	14
3	From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 903-927.	2.1	40
4	Recovery of Forest and Phylogenetic Structure in Abandoned Cocoa Agroforestry in the Atlantic Forest of Brazil. Environmental Management, 2017, 59, 410-418.	2.7	10
5	Climate friendliness of cocoa agroforests is compatible with productivity increase. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 67-80.	2.1	39
6	Bat and bird exclusion but not shade cover influence arthropod abundance and cocoa leaf consumption in agroforestry landscape in northeast Brazil. Agriculture, Ecosystems and Environment, 2016, 232, 247-253.	5.3	28
7	Why do farmers plant more exotic than native trees? A case study from the Western Ghats, India. Agriculture, Ecosystems and Environment, 2016, 230, 315-328.	5.3	24
8	Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 2016, 556, 231-241.	8.0	235
9	Commodity production as restoration driver in the Brazilian Amazon? Pasture re-agro-forestation with cocoa (Theobroma cacao) in southern ParÃ _i . Sustainability Science, 2016, 11, 277-293.	4.9	40
10	Effect of Nitrogen, Row Spacing, and Plant Density on Yield, Yield Components, and Plant Physiology in Soybean–Wheat Intercropping. Agronomy Journal, 2015, 107, 2162-2170.	1.8	32
11	Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoS ONE, 2015, 10, e0124155.	2.5	214
12	Growth and nutrient accumulation of Brazil nut trees (Bertholletia excelsa) in agroforestry at different fertilizer levels. Journal of Forestry Research, 2015, 26, 347-353.	3.6	12
13	Climate change, cocoa migrations and deforestation in West Africa: What does the past tell us about the future?. Sustainability Science, 2015, 10, 101-111.	4.9	98
14	An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture. Conservation Biology, 2015, 29, 309-320.	4.7	74
15	Conserving Biodiversity Through Certification of Tropical Agroforestry Crops at Local and Landscape Scales. Conservation Letters, 2015, 8, 14-23.	5.7	126
16	Contribution of agroforests to landscape carbon storage. Mitigation and Adaptation Strategies for Global Change, 2015, 20, 1175-1190.	2.1	43
17	Winner or loser of climate change? A modeling study of current and future climatic suitability of Arabica coffee in Indonesia. Regional Environmental Change, 2015, 15, 1473-1482.	2.9	52
18	Introduction—Economic and Ecological Aspects of Diversification of Tropical Tree Crops. , 2015, , 1-40.		7

2

GöTZ SCHROTH

#	Article	IF	CITATIONS
19	Plant diversity management in cocoa agroforestry systems in West and Central Africa—effects of markets and household needs. Agroforestry Systems, 2014, 88, 1021-1034.	2.0	39
20	Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synergies?. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 1119-1137.	2.1	87
21	Farmer strategies for tree crop diversification in the humid tropics. A review. Agronomy for Sustainable Development, 2014, 34, 139-154.	5.3	80
22	Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agronomy for Sustainable Development, 2014, 34, 887-897.	5.3	51
23	Unsaturated Soil Hydraulic Conductivity in the Central Amazon: Field Evaluations. , 2014, , 283-305.		3
24	An Integrated Framework for Assessing Vulnerability to Climate Change and Developing Adaptation Strategies for Coffee Growing Families in Mesoamerica. PLoS ONE, 2014, 9, e88463.	2.5	132
25	Technical and Institutional Innovation in Agroforestry for Protected Areas Management in the Brazilian Amazon: Opportunities and Limitations. Environmental Management, 2013, 52, 427-440.	2.7	11
26	Integrating Climate Change Adaptation and Mitigation Through Agroforestry and Ecosystem Conservation. Advances in Agroforestry, 2012, , 105-126.	0.8	46
27	Resolving the Conflict Between Ecosystem Protection and Land Use in Protected Areas of the Sierra Madre de Chiapas, Mexico. Environmental Management, 2012, 49, 649-662.	2.7	39
28	Multifunctional shade-tree management in tropical agroforestry landscapes - a review. Journal of Applied Ecology, 2011, 48, 619-629.	4.0	527
29	Linking Carbon, Biodiversity and Livelihoods Near Forest Margins: The Role of Agroforestry. Advances in Agroforestry, 2011, , 179-200.	0.8	13
30	Conservation in tropical landscape mosaics: the case of the cacao landscape of southern Bahia, Brazil. Biodiversity and Conservation, 2011, 20, 1635-1654.	2.6	92
31	Biodiversity Conservation, Ecosystem Services and Livelihoods in Tropical Landscapes: Towards a Common Agenda. Environmental Management, 2011, 48, 229-236.	2.7	40
32	Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 605-625.	2.1	158
33	Landscape and farm scale management to enhance biodiversity conservation in the cocoa producing region of southern Bahia, Brazil. Biodiversity and Conservation, 2009, 18, 577-603.	2.6	110
34	Benefits of biodiversity conservation to agriculture and rural livelihoods. Biodiversity, 2008, 9, 82-85.	1.1	3
35	Biodiversity conservation in cocoa production landscapes: an overview. Biodiversity and Conservation, 2007, 16, 2237-2244.	2.6	205

Belowground Interactions in Tree–Crop Agroforestry. , 2007, , 159-170.

GöTZ SCHROTH

#	Article	IF	CITATIONS
37	The future of deforestation in the Brazilian Amazon. Futures, 2006, 38, 432-453.	2.5	171
38	Biological Soil Fertility Management for Tree-Crop Agroforestry. Books in Soils, Plants, and the Environment, 2006, , 291-303.	0.1	2
39	Agroforestry and Biodiversity Conservation – Traditional Practices, Present Dynamics, and Lessons for the Future. Biodiversity and Conservation, 2006, 15, 549-554.	2.6	233
40	Fine-root dynamics of coffee in association with two shade trees in Costa Rica. Agroforestry Systems, 2005, 63, 247-261.	2.0	23
41	Rubber agroforests at the Tapajós river, Brazilian Amazon—environmentally benign land use systems in an old forest frontier region. Agriculture, Ecosystems and Environment, 2003, 97, 151-165.	5.3	51
42	Species and site characteristics that permit the association of fast-growing trees with crops: the case of Eucalyptus deglupta as coffee shade in Costa Rica. Forest Ecology and Management, 2003, 175, 205-215.	3.2	38
43	Root interactions between young Eucalyptus deglupta trees and competitive grass species in contour strips. Forest Ecology and Management, 2003, 179, 429-440.	3.2	22
44	Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. Forest Ecology and Management, 2002, 163, 131-150.	3.2	200
45	Predictors of deforestation in the Brazilian Amazon. Journal of Biogeography, 2002, 29, 737-748.	3.0	364
46	Phosphorus management for perennial crops in central Amazonian upland soils. Plant and Soil, 2001, 237, 309-319.	3.7	29
47	Title is missing!. Plant and Soil, 2000, 221, 143-156.	3.7	18
48	Nitrogen use in mixed tree crop plantations with a legume cover crop. Plant and Soil, 2000, 225, 63-72.	3.7	17
49	Subsoil accumulation of mineral nitrogen under polyculture and monoculture plantations, fallow and primary forest in a ferralitic Amazonian upland soil. Agriculture, Ecosystems and Environment, 1999, 75, 109-120.	5.3	46
50	Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil. Hydrological Processes, 1999, 13, 1423-1436.	2.6	70
51	Distribution patterns of the litter macrofauna in agroforestry and monoculture plantations in central Amazonia as affected by plant species and management. Applied Soil Ecology, 1999, 13, 57-68.	4.3	49
52	Short-term effects of soil amendment with tree legume biomass on carbon and nitrogen in particle size separates in Central Togo. Soil Biology and Biochemistry, 1998, 30, 1545-1552.	8.8	28
53	Root system characteristics with agroforestry relevance of nine leguminous tree species and a spontaneous fallow in a semi-deciduous rainforest area of West Africa. Forest Ecology and Management, 1996, 84, 199-208.	3.2	19
54	Root length dynamics in agroforestry with Gliricidia sepium as compared to sole cropping in the semi-deciduous rainforest zone of West Africa. Plant and Soil, 1995, 170, 297-306.	3.7	70

#	Article	IF	CITATIONS
55	Contrasting effects of roots and mulch from three agroforestry tree species on yields of alley cropped maize. Agriculture, Ecosystems and Environment, 1995, 54, 89-101.	5.3	31