Alfred Leipertz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10707800/publications.pdf

Version: 2024-02-01

		87723	114278
170	5,390	38	63
papers	citations	h-index	g-index
173	173	173	3831
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CH and NO planar laser-induced fluorescence and Rayleigh-scattering in turbulent flames using a multimode optical parametric oscillator. Applied Optics, 2021, 60, 98.	0.9	7
2	J3 Tropfenkondensation. Springer Reference Technik, 2019, , 1131-1137.	0.0	0
3	13th International Congress of Engine Combustion Processes: Current Problems and Modern Techniques (ENCOM2017). International Journal of Engine Research, 2018, 19, 3-6.	1.4	O
4	Tropfenkondensation. Springer Reference Technik, 2018, , 1-7.	0.0	0
5	On the effect of ionic wind on structure and temperature of laminar premixed flames influenced by electric fields. Combustion and Flame, 2017, 176, 391-399.	2.8	37
6	Simultaneous two-dimensional measurement of fuel–air ratio and temperature in a direct-injection spark-ignition engine using a new tracer-pair laser-induced fluorescence technique. International Journal of Engine Research, 2016, 17, 120-128.	1.4	11
7	12th International Congress of Engine Combustion Processes: Current problems and modern techniques (ENCOM2015). International Journal of Engine Research, 2016, 17, 3-5.	1.4	5
8	Simultaneous imaging of fuel vapor mass fraction and gas-phase temperature inside gasoline sprays using two-line excitation tracer planar laser-induced fluorescence. Applied Optics, 2016, 55, 1453.	2.1	8
9	Demonstration of a signal enhanced fast Raman sensor for multiâ€species gas analyses at a low pressure range for anesthesia monitoring. Journal of Raman Spectroscopy, 2015, 46, 708-715.	1.2	34
10	Influence of electric fields on premixed laminar flames: Visualization of perturbations and potential for suppression of thermoacoustic oscillations. Proceedings of the Combustion Institute, 2015, 35, 3521-3528.	2.4	24
11	In Situ Raman Monitoring of the Formation and Growth of Carbon Nanotubes via Chemical Vapor Deposition. Procedia Engineering, 2015, 102, 190-200.	1.2	7
12	Density, Surface Tension, and Kinematic Viscosity of Hydrofluoroethers HFE-7000, HFE-7100, HFE-7200, HFE-7300, and HFE-7500. Journal of Chemical & Engineering Data, 2015, 60, 3759-3765.	1.0	127
13	Fuel concentration imaging inside an optically accessible diesel engine using 1-methylnaphthalene planar laser-induced fluorescence. International Journal of Engine Research, 2014, 15, 741-750.	1.4	8
14	Laserbasierte On-line-Analyse von Biogasen mit einer Raman-Sonde. TM Technisches Messen, 2014, 81, 546-553.	0.3	10
15	Raman Analytics for Complex Liquid Phase Systems. , 2014, , .		O
16	Simultaneous Measurement of Speed of Sound, Thermal Diffusivity, and Bulk Viscosity of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids Using Laser-Induced Gratings. Journal of Physical Chemistry B, 2014, 118, 14493-14501.	1.2	19
17	Deconvolution of Raman spectra for the quantification of ternary highâ€pressure phase equilibria composed of carbon dioxide, water and organic solvent. Journal of Raman Spectroscopy, 2014, 45, 246-252.	1.2	28
18	Visualisation of Temperature and Vapour Distribution in a Gasoline Spray. MTZ Worldwide, 2014, 75, 50-55.	0.1	3

#	Article	IF	Citations
19	Simultaneous in situ Raman monitoring of the solid and gas phases during the formation and growth of carbon nanostructures inside a cold wall CCVD reactor. Carbon, 2014, 78, 164-180.	5.4	9
20	Combined shifted-excitation Raman difference spectroscopy and support vector regression for monitoring the algal production of complex polysaccharides. Analyst, The, 2013, 138, 5639.	1.7	46
21	Condensation heat transfer on single horizontal smooth and finned tubes and tube bundles for R134a and propane. International Journal of Heat and Mass Transfer, 2013, 56, 516-524.	2.5	47
22	Binary Diffusion Coefficients for Mixtures of Ionic Liquids [EMIM][N(CN) ₂], [EMIM][NTf ₂], and [HMIM][NTf ₂] with Acetone and Ethanol by Dynamic Light Scattering (DLS). Journal of Physical Chemistry B, 2013, 117, 2429-2437.	1.2	21
23	On the role of physiochemical properties on evaporation behavior of DISI biofuel sprays. Experiments in Fluids, 2013, 54, 1.	1.1	28
24	Non-invasive quantification of phase equilibria of ternary mixtures composed of carbon dioxide, organic solvent and water. Journal of Supercritical Fluids, 2013, 84, 146-154.	1.6	25
25	Investigation of CO2 sorption in molten polymers at high pressures using RamanÂline imaging. Polymer, 2013, 54, 812-818.	1.8	20
26	Hybrid femtosecond/picosecond coherent anti‧tokes Raman scattering for highâ€speed CH ₄ /N ₂ measurements in binary gas mixtures. Journal of Raman Spectroscopy, 2013, 44, 1336-1343.	1.2	26
27	Element by element prediction model of condensation heat transfer on a horizontal integral finned tube. International Journal of Heat and Mass Transfer, 2013, 62, 463-472.	2.5	30
28	A new guarded parallel-plate instrument for the measurement of the thermal conductivity of fluids and solids. International Journal of Heat and Mass Transfer, 2013, 58, 610-618.	2.5	32
29	Manipulating the size, the morphology and the polymorphism of acetaminophen using supercritical antisolvent (SAS) precipitation. Journal of Supercritical Fluids, 2013, 82, 230-237.	1.6	49
30	Microfluidic investigation into mass transfer in compressible multi-phase systems composed of oil, water and carbon dioxide at elevated pressure. Journal of Supercritical Fluids, 2013, 84, 121-131.	1.6	17
31	A Raman spectroscopic method for the determination of high pressure vapour liquid equilibria. Fluid Phase Equilibria, 2013, 360, 265-273.	1.4	21
32	Transient electric field response of laminar premixed flames. Proceedings of the Combustion Institute, 2013, 34, 3303-3310.	2.4	25
33	Lycopene solubility in mixtures of carbon dioxide and ethyl acetate. Journal of Supercritical Fluids, 2013, 75, 6-10.	1.6	12
34	Quantification of the mass transport in a two phase binary system at elevated pressures applying Raman spectroscopy: Pendant liquid solvent drop in a supercritical carbon dioxide environment. International Journal of Heat and Mass Transfer, 2013, 62, 729-740.	2,5	19
35	Investigation of the chemical stability of the laser-induced fluorescence tracers acetone, diethylketone, and toluene under IC engine conditions using Raman spectroscopy. Applied Optics, 2013, 52, 6300.	0.9	18
36	Characterization of four potential laser-induced fluorescence tracers for diesel engine applications. Applied Optics, 2013, 52, 8001.	0.9	20

3

#	Article	IF	Citations
37	Fuel property and fuel temperature effects on internal nozzle flow, atomization and cyclic spray fluctuations of a direct injection spark ignition–injector. International Journal of Engine Research, 2013, 14, 543-556.	1.4	26
38	Broadband Two-Color Laser-Induced Incandescence Pyrometry Approach for Nanoparticle Characterization with Improved Sensitivity. Applied Spectroscopy, 2013, 67, 1098-1100.	1.2	3
39	J3 Tropfenkondensation. , 2013, , 1041-1046.		0
40	Gas phase temperature measurements in the liquid and particle regime of a flame spray pyrolysis process using O ₂ -based pure rotational coherent anti-Stokes Raman scattering. Applied Optics, 2012, 51, 6063.	0.9	33
41	Characterization of a CH planar laser-induced fluorescence imaging system using a kHz-rate multimode-pumped optical parametric oscillator. Applied Optics, 2012, 51, 2589.	0.9	19
42	Attenuated Total Reflection Infrared Difference Spectroscopy (ATR-IRDS) for Quantitative Reaction Monitoring. Applied Spectroscopy, 2012, 66, 685-688.	1.2	1
43	Raman Difference Spectroscopy Approach for Monitoring of a Bioreactor. , 2012, , .		0
44	Molecular interactions and macroscopic effects in binary mixtures of an imidazolium ionic liquid with water, methanol, and ethanol. Journal of Molecular Structure, 2012, 1018, 45-53.	1.8	64
45	Viscosity, Interfacial Tension, Self-Diffusion Coefficient, Density, and Refractive Index of the Ionic Liquid 1-Ethyl-3-methylimidazolium Tetracyanoborate as a Function of Temperature at Atmospheric Pressure. Journal of Chemical & December 1988 (2012, 57, 828-835).	1.0	68
46	Laser-induced breakdown flame thermometry. Combustion and Flame, 2012, 159, 3576-3582.	2.8	63
47	Gas Sensor for Volatile Anesthetic Agents Based on Raman Scattering. Physics Procedia, 2012, 39, 835-842.	1.2	5
48	Quantitative DISI Spray Vapor Temperature Study for Different Biofuels by Two-Line Excitation Laser-Induced Fluorescence. , 2012 , , .		5
49	Flow field characterization in a vertically oriented cold wall CCVD reactor by particle image velocimetry. Chemical Engineering Journal, 2012, 184, 315-325.	6.6	10
50	Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. Journal of Supercritical Fluids, 2012, 66, 350-358.	1.6	52
51	Determination of Physicochemical Parameters of Ionic Liquids and Their Mixtures with Solvents Using Laser-Induced Gratings. Journal of Physical Chemistry B, 2011, 115, 8528-8533.	1.2	19
52	Mutual diffusion in binary mixtures of ionic liquids and molecular liquids by dynamic light scattering (DLS). Physical Chemistry Chemical Physics, 2011, 13, 9525.	1.3	34
53	Application of linear Raman spectroscopy for the determination of acetone decomposition. Optics Express, 2011, 19, 11052.	1.7	11
54	High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator. Optics Letters, 2011, 36, 3927.	1.7	22

#	Article	lF	Citations
55	Influence of the fuel quantity on the spray formation and ignition under current engine relevant conditions. , $2011, \ldots$		7
56	Entwicklung eines Echtzeitanalyse-Systems zur Charakterisierung von Brenngasgemischen in Gasturbinenkraftwerken. Chemie-Ingenieur-Technik, 2011, 83, 247-253.	0.4	13
57	Studies on the Origin of Dropwise Condensation of Steam on Ion Implanted Metallic Surfaces. Chemie-Ingenieur-Technik, 2011, 83, 545-551.	0.4	6
58	Measurement and Prediction of the Thermal Conductivity of Ionic Liquids. Chemie-Ingenieur-Technik, 2011, 83, 1510-1514.	0.4	4
59	Study of the influence of electric fields on flames using planar LIF and PIV techniques. Proceedings of the Combustion Institute, 2011, 33, 3195-3201.	2.4	44
60	Observation of liquid solution volume expansion during particle precipitation in the supercritical CO2 antisolvent process. Journal of Supercritical Fluids, 2011, 56, 121-124.	1.6	16
61	A-priori testing of an eddy viscosity model for the density-weighted subgrid scale stress tensor in turbulent premixed flames. Experiments in Fluids, 2010, 49, 839-851.	1.1	10
62	Concentrationâ€Dependent Hydrogenâ€Bonding Effects on the Dimethyl Sulfoxide Vibrational Structure in the Presence of Water, Methanol, and Ethanol. ChemPhysChem, 2010, 11, 630-637.	1.0	80
63	Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy. Journal of Molecular Structure, 2010, 965, 121-124.	1.8	24
64	Simultaneous quantitative Acetone-PLIF measurements for determination of temperature and gas composition fields in an IC-engine. Physics Procedia, 2010, 5, 689-696.	1.2	3
65	In situ optical monitoring of the solution concentration influence on supercritical particle precipitation. Journal of Supercritical Fluids, 2010, 55, 282-291.	1.6	18
66	Experimental Study on the Origin of Dropwise Condensation of Steam on Ion Implanted Metallic Surfaces. , 2010, , .		0
67	On the Mechanism of Dropwise Condensation of Steam on Ion Implanted Metallic Surfaces. Journal of Heat Transfer, 2010, 132, .	1.2	9
68	The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Physical Chemistry Chemical Physics, 2010, 12, 14153.	1.3	278
69	Densities and Excess Molar Volumes for Binary Mixtures of Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate with Solvents. Journal of Chemical & Ethylsulfate with Solvents. Journal of Chemical & Ethylsulfate with Solvents.	1.0	77
70	On the Characteristics of Ion Implanted Metallic Surfaces Inducing Dropwise Condensation of Steam. Langmuir, 2010, 26, 5971-5975.	1.6	26
71	Effect of Fuel Properties on Spray Breakup and Evaporation Studied for a Multihole Direct Injection Spark Ignition Injector. Energy & Spark Ignition Ignition Injector. Energy & Spark Ignition I	2.5	35
72	Acetone laser-induced fluorescence behavior for the simultaneous quantification of temperature and residual gas distribution in fired spark-ignition engines. Applied Optics, 2010, 49, 37.	2.1	50

#	Article	IF	Citations
73	In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering. Optics Express, 2010, 18, 18223.	1.7	10
74	Raman mixture composition and flow velocity imaging with high repetition rates. Optics Express, 2010, 18, 24579.	1.7	11
75	Simultaneous Raman and elastic light scattering imaging for particle formation investigation. Optics Letters, 2010, 35, 2553.	1.7	12
76	Characterization of Escherichia coli suspensions using UV/Vis/NIR absorption spectroscopy. Analytical Methods, 2010, 2, 123-128.	1.3	27
77	Dropwise Condensation Heat Transfer on Plasma-lon-Implanted Small Horizontal Tube Bundles. Heat Transfer Engineering, 2010, 31, 821-828.	1.2	14
78	J3 Dropwise Condensation. , 2010, , 933-938.		8
79	Laser Diagnostics for the Model Development in Turbulent Premixed Flames. Zeitschrift Fur Physikalische Chemie, 2009, 223, 481-502.	1.4	3
80	Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV. Proceedings of the Combustion Institute, 2009, 32, 1723-1730.	2.4	33
81	High resolution dual-plane stereo-PIV for validation of subgrid scale models in large-eddy simulations of turbulent premixed flames. Combustion and Flame, 2009, 156, 1552-1564.	2.8	33
82	Gas mixing analysis by simultaneous Raman imaging and particle image velocimetry. Optics Letters, 2009, 34, 3122.	1.7	24
83	Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N_2 thermometry. Optics Letters, 2009, 34, 3755.	1.7	61
84	Development of a simplified dual-pump dual-broadband coherent anti-Stokes Raman scattering system. Applied Optics, 2009, 48, B43.	2.1	19
85	Two-dimensional Raman mole-fraction and temperature measurements for hydrogen-nitrogen mixture analysis. Applied Optics, 2009, 48, B57.	2.1	21
86	Laser sheet dropsizing based on two-dimensional Raman and Mie scattering. Applied Optics, 2009, 48, 1853.	2.1	24
87	Simultaneous laser-induced fluorescence and Raman imaging inside a hydrogen engine. Applied Optics, 2009, 48, 6643.	2.1	19
88	Determination of Glucose and Cellobiose Dissolved in the Ionic Liquid 1-Ethyl-3-Methylimidazolium Acetate Using Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2009, 63, 1041-1049.	1.2	26
89	Viscosity, Interfacial Tension, Density, and Refractive Index of Ionic Liquids [EMIM] [MeSO ₃], [EMIM] [MeOHPO ₂], [EMIM] [OcSO ₄], and [BBIM] [NTf ₂] in Dependence on Temperature at Atmospheric Pressure. Journal of Chemical &: Engineering Data. 2009. 54. 2576-2583.	1.0	116
90	Chapter 6 Time-Resolved Laser-Induced Incandescence. Advances in Chemical Engineering, 2009, , 223-269.	0.5	1

#	Article	IF	CITATIONS
91	Development of Imaging Laser Diagnostics for the Validation of LE-Simulations of Flows with Heat and Mass Transfer. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2009, , 175-184.	0.2	O
92	Quantitative Analysis of Alphaâ€ <scp>D</scp> â€glucose in an Ionic Liquid by Using Infrared Spectroscopy. ChemPhysChem, 2008, 9, 1317-1322.	1.0	51
93	Infrared Spectroscopy of a Wilkinson Catalyst in a Roomâ€√emperature Ionic Liquid. ChemPhysChem, 2008, 9, 2207-2213.	1.0	27
94	Systematic experiments on turbulent premixed Bunsen flames including turbulent flux measurements. Combustion and Flame, 2008, 152, 616-631.	2.8	31
95	Density, Refractive Index, Interfacial Tension, and Viscosity of Ionic Liquids [EMIM][EtSO ₄], [EMIM][NTf ₂], [EMIM][N(CN) ₂], and [OMA][NTf ₂] in Dependence on Temperature at Atmospheric Pressure. Journal of Physical Chemistry B. 2008, 112, 12420-12430.	1.2	302
96	Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine. Applied Optics, 2008, 47, 6488.	2.1	19
97	Determination of probe volume dimensions in coherent measurement techniques. Applied Optics, 2008, 47, 6601.	2.1	18
98	Two-photon stimulated Raman excitation of thermal laser-induced gratings in molecular gases using broadband radiation of a single laser. Optics Express, 2008, 16, 18379.	1.7	6
99	Combustion and pollutant formation in diesel engines. MTZ Worldwide, 2008, 69, 48-55.	0.1	0
100	An Industrial Reference Fluid for Moderately High Viscosity. Journal of Chemical & Engineering Data, 2008, 53, 2003-2011.	1.0	43
101	Improvement of Condensation Heat Transfer by Surface Modifications. Heat Transfer Engineering, 2008, 29, 343-356.	1.2	31
102	Application of laser-induced incandescence to suspended carbon black particles. Optics Letters, 2007, 32, 1947.	1.7	11
103	Injection of ethanol into supercritical CO_2: Determination of mole fraction and phase state using linear Raman scattering. Optics Express, 2007, 15, 8377.	1.7	11
104	Flame front detection and characterization using conditioned particle image velocimetry (CPIV). Optics Express, 2007, 15, 15444.	1.7	78
105	Experimental Vibrational Study of Imidazolium-Based Ionic Liquids: Raman and Infrared Spectra of 1-Ethyl-3-methylimidazolium Bis(Trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium Ethylsulfate. Applied Spectroscopy, 2007, 61, 1306-1311.	1.2	281
106	Revealing the Influence of the Strength of Coulomb Interactions on the Viscosity and Interfacial Tension of Ionic Liquid Cosolvent Mixtures. Journal of Physical Chemistry B, 2007, 111, 12817-12822.	1.2	64
107	Viscosity of Diisodecyl Phthalate by Surface Light Scattering (SLS). Journal of Chemical & Chemical	1.0	50
108	Locally Resolved Measurement of Gas-Phase Temperature and EGR-Ratio in an HCCI-Engine and Their Influence on Combustion Timing. , 2007, , .		4

#	Article	IF	CITATIONS
109	Two-dimensional direct measurement of the turbulent flux in turbulent premixed swirl flames. Proceedings of the Combustion Institute, 2007, 31, 1337-1344.	2.4	20
110	Thermophysical Properties of a Quaternary Refrigerant Mixture: Comparison of Dynamic Light Scattering Measurements with a Simple Prediction Method. International Journal of Thermophysics, 2007, 28, 743-757.	1.0	15
111	Simultaneous application of single-shot Ramanography and particle image velocimetry. Optics Letters, 2006, 31, 1005.	1.7	13
112	Combined coherent anti-Stokes Raman spectroscopy and linear Raman spectroscopy for simultaneous temperature and multiple species measurements. Optics Letters, 2006, 31, 1908.	1.7	39
113	Application of a beam homogenizer to planar laser diagnostics. Optics Express, 2006, 14, 10171.	1.7	62
114	Time-resolved measurement of the local equivalence ratio in a gaseous propane injection process using laser-induced gratings. Optics Express, 2006, 14, 12994.	1.7	22
115	Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy. Applied Optics, 2006, 45, 3646.	2.1	45
116	Laser-induced fluorescence of ketones at elevated temperatures for pressures up to 20 bars by using a 248 nm excitation laser wavelength: experiments and model improvements. Applied Optics, 2006, 45, 4982.	2.1	40
117	LOCALLY RESOLVED INVESTIGATION OF THE VAPORIZATION OF GDI SPRAYS APPLYING DIFFERENT LASER TECHNIQUES. , 2006, 16 , $319-330$.		20
118	Laseroptische Charakterisierung von gasgetragenen Nanoteilchen mit der zeitaufgelösten laserinduzierten Glühtechnik (TIRE-LII) (Laser-Optical Characterization of Air-Borne Nanoparticles by) Tj ETQq0	0 0. æBT /	Oværlock 10
119	Development of an algebraic reaction rate closure for the numerical calculation of turbulent premixed methane, ethylene, and propane/air flames for pressures up to 1.0 MPa. Combustion and Flame, 2005, 140, 257-266.	2.8	111
120	Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry. Experiments in Fluids, 2005, 39, 375-384.	1.1	34
121	Influence of the wall on the combustion and pollutant formation in small bore DI diesel engines. MTZ Worldwide, 2005, 66, 25-28.	0.1	1
122	Diffusion Measurements in Fluids by Dynamic Light Scattering. , 2005, , 579-618.		11
123	Simultaneous and time-resolved temperature and relative CO_2–N_2 and O_2–CO_2–N_2 concentration measurements with pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa. Applied Optics, 2005, 44, 5582.	2.1	25
124	Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection Diesel engine by using linear Raman spectroscopy. Applied Optics, 2005, 44, 6606.	2.1	30
125	Determination of Primary Particle Size Distributions from Time-Resolved Laser-Induced Incandescence Measurements. Applied Optics, 2004, 43, 3726.	2.1	55
126	Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering. Applied Optics, 2004, 43, 5564.	2.1	60

#	Article	IF	CITATIONS
127	Gas-phase temperature measurement in the vaporizing spray of a gasoline direct-injection injector by use of pure rotational coherent anti-Stokes Raman scattering. Optics Letters, 2004, 29, 247.	1.7	66
128	Application of an optical pulse stretcher to coherent anti-Stokes Raman spectroscopy. Optics Letters, 2004, 29, 2381.	1.7	30
129	Simultaneous temperature and relative oxygen and methane concentration measurements in a partially premixed sooting flame using a novel CARS-technique. Journal of Molecular Structure, 2003, 661-662, 515-524.	1.8	19
130	Characterization of Nano-Particles Using Laser-Induced Incandescence. Particle and Particle Systems Characterization, 2003, 20, 81-93.	1.2	30
131	Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames. Applied Optics, 2002, 41, 564.	2.1	46
132	Spray/wall interaction influences on the diesel engine mixture formation process investigated by spontaneous Raman scattering. Proceedings of the Combustion Institute, 2002, 29, 617-623.	2.4	22
133	Direct determination of the turbulent flux by simultaneous application of filtered rayleigh scattering thermometry and particle image velocimetry. Proceedings of the Combustion Institute, 2002, 29, 2669-2677.	2.4	42
134	Simultaneous two-dimensional flow velocity and gas temperature measurements by use of a combined particle image velocimetry and filtered Rayleigh scattering technique. Applied Optics, 2001, 40, 5379.	2.1	70
135	Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII). Combustion and Flame, 2000, 120, 439-450.	2.8	111
136	Simultaneous temperature and relative O_2–N_2 concentration measurements by single-shot pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa. Applied Optics, 2000, 39, 6918.	2.1	23
137	Determination of several thermophysical properties of toluene using a single experimental setup. Fluid Phase Equilibria, 1999, 161, 337-351.	1.4	11
138	Measurement of the resolved flame structure of turbulent premixed flames with constant reynolds number and varied stoichiometry. Proceedings of the Combustion Institute, 1998, 27, 785-792.	0.3	77
139	Parameter study on the performance of dropwise condensation. International Journal of Thermal Sciences, 1998, 37, 539-548.	0.2	30
140	One-dimensional, time-resolved Raman measurements in a sooting flame made with 355-nm excitation. Applied Optics, 1998, 37, 4937.	2.1	43
141	Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence. Applied Optics, 1998, 37, 5647.	2.1	127
142	Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot simultaneous temperature and relative N_2–O_2 concentration. Applied Optics, 1998, 37, 5659.	2.1	26
143	Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K. Applied Optics, 1997, 36, 3500.	2.1	34
144	Two-dimensional temperature determination in the exhaust region of a laminar flat-flame burner with linear Raman scattering. Applied Optics, 1997, 36, 6989.	2.1	33

#	Article	IF	CITATIONS
145	Light scattering by surface waves on a vertical layer of liquid toluene. Applied Optics, 1997, 36, 7615.	2.1	11
146	Einsatz PTFE-ÄĦnlicher Hartstoff-schichten bei der Tropfenkondensation von Wasserdampf. Chemie-Ingenieur-Technik, 1997, 69, 122-125.	0.4	10
147	Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air. Applied Optics, 1996, 35, 2665.	2.1	93
148	Industrial combustion control using UV emission tomography. Proceedings of the Combustion Institute, 1996, 26, 2869-2875.	0.3	23
149	Thermal diffusivity and sound velocity of Round-Robin R134a. Fluid Phase Equilibria, 1996, 125, 245-255.	1.4	13
150	Thermophysical properties of fluids by light scattering. Fluid Phase Equilibria, 1996, 125, 219-233.	1.4	8
151	Dynamic light scattering system with a novel scattering cell for the measurement of particle diffusion coefficients. Review of Scientific Instruments, 1996, 67, 3164-3169.	0.6	10
152	Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence. Optics Letters, 1995, 20, 2342.	1.7	161
153	Determination of the dynamic viscosity of transparent fluids by using dynamic light scattering. Applied Optics, 1993, 32, 3813.	2.1	24
154	Sound velocity measurements by the use of dynamic light scattering: data reduction by the application of a Fourier transformation. Applied Optics, 1993, 32, 3886.	2.1	28
155	Laserspektroskopische Bestimmung thermophysikalischer Eigenschaften transparenter Fluide. Chemie-Ingenieur-Technik, 1992, 64, 17-24.	0.4	3
156	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:		0
157	Nutzung von Laser-Streulicht-Techniken in der WĤme-, StrĶmungs- und Verfahrenstechnik. , 1990, , 387-393.		1
158	Nutzung von Laser-Raman-Verfahren in der Verbrennungstechnik. Chemie-Ingenieur-Technik, 1989, 61, 39-48.	0.4	10
159	Raman Processes and their Application. , 1989, , 107-122.		4
160	Contact-free measurements of oxygen concentration in industrial flames by raman scattering. Chemical Engineering and Technology, 1987, 10, 190-203.	0.9	8
161	Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame. Applied Optics, 1985, 24, 4509.	2.1	9
162	Messung der TemperaturleitfÄ h igkeit transparenter Flýssigkeiten mit Hilfe der Photonenkorrelationsspektroskopie. Chemie-Ingenieur-Technik, 1984, 56, 334-335.	0.4	4

ALFRED LEIPERTZ

#	ARTICLE	IF	CITATIONS
163	Photonenkorrelationsspektroskopie. Physik in Unserer Zeit, 1984, 15, 68-75.	0.0	14
164	Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame. Optics Letters, 1984, 9, 341.	1.7	36
165	Raman oxygen detection for combustion control and regulation. Applied Optics, 1983, 22, 901.	2.1	6
166	Laserâ€Ramanâ€Spektroskopie in der Wäne―und Strömungstechnik. Physik in Unserer Zeit, 1981, 12, 107-1	1 5. 0	8
167	Giant Pulse Laser Raman Probe For Low Gas Concentration Detection. Optical Engineering, 1981, 20, 599.	0.5	5
168	Experimental Investigation Of Small Single And Multiple Free Jets By Laser Raman Spectroscopy. Optical Engineering, 1979, 18, .	0.5	6
169	Investigation of Fuel Effects on Spray Atomization and Evaporation Studied for a Multi-hole DISI Injector with a Late Injection Timing. SAE International Journal of Fuels and Lubricants, 0, 5, 254-264.	0.2	9
170	Pilot Injection Ignition Properties Under Low-Temperature, Dilute In-Cylinder Conditions. SAE International Journal of Engines, 0, 6, 1888-1907.	0.4	18