
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1070668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nature Genetics, 1999, 23, 166-175.	21.4	1,036
2	Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature Medicine, 2014, 20, 1315-1320.	30.7	483
3	Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nature Genetics, 2000, 24, 266-270.	21.4	474
4	Prevalence of Heparin-Associated Antibodies Without Thrombosis in Patients Undergoing Cardiopulmonary Bypass Surgery. Circulation, 1997, 95, 1242-1246.	1.6	293
5	Ultralarge complexes of PF4 and heparin are central to the pathogenesis of heparin-induced thrombocytopenia. Blood, 2005, 105, 131-138.	1.4	272
6	Role of platelet surface PF4 antigenic complexes in heparin-induced thrombocytopenia pathogenesis: diagnostic and therapeutic implications. Blood, 2006, 107, 2346-2353.	1.4	234
7	Comparison of PF4/Heparin ELISA Assay With the ¹⁴ C-Serotonin Release Assay in the Diagnosis of Heparin-induced Thrombocytopenia. American Journal of Clinical Pathology, 1995, 104, 648-654.	0.7	206
8	Heparin-induced thrombocytopenia/thrombosis in a transgenic mouse model requires human platelet factor 4 and platelet activation through FcγRIIA. Blood, 2001, 98, 2442-2447.	1.4	193
9	Transgenic mice studies demonstrate a role for platelet factor 4 in thrombosis: dissociation between anticoagulant and antithrombotic effect of heparin. Blood, 2004, 104, 3173-3180.	1.4	140
10	Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thrombosis Research, 2010, 125, 292-296.	1.7	139
11	Monocyte-bound PF4 in the pathogenesis of heparin-induced thrombocytopenia. Blood, 2010, 116, 5021-5031.	1.4	134
12	Megakaryocyte precursors, megakaryocytes and platelets express the HIV coâ€receptor CXCR4 on their surface: determination of response to stromalâ€derived factorâ€1 by megakaryocytes and platelets. British Journal of Haematology, 1999, 104, 220-229.	2.5	128
13	Neutrophil accumulation and NET release contribute to thrombosis in HIT. JCI Insight, 2018, 3, .	5.0	115
14	Atomic description of the immune complex involved in heparin-induced thrombocytopenia. Nature Communications, 2015, 6, 8277.	12.8	101
15	Understanding platelet generation from megakaryocytes: implications for in vitro–derived platelets. Blood, 2016, 127, 1227-1233.	1.4	93
16	Platelet transactivation by monocytes promotes thrombosis in heparin-induced thrombocytopenia. Blood, 2016, 127, 464-472.	1.4	86
17	Heparin-induced thrombocytopenia: An autoimmune disorder regulated through dynamic autoantigen assembly/disassembly. Journal of Clinical Apheresis, 2007, 22, 31-36.	1.3	74
18	Comparative analysis of human ex vivo–generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale. Blood, 2015, 125, 3627-3636.	1.4	74

#	Article	IF	CITATIONS
19	Dynamic antibody-binding properties in the pathogenesis of HIT. Blood, 2012, 120, 1137-1142.	1.4	65
20	Analysis of the spatial and temporal characteristics of platelet-delivered factor VIII–based clots. Blood, 2008, 112, 1101-1108.	1.4	63
21	Polyphosphate/platelet factor 4 complexes can mediate heparin-independent platelet activation in heparin-induced thrombocytopenia. Blood Advances, 2016, 1, 62-74.	5.2	58
22	Serpin functions in host-pathogen interactions. PeerJ, 2018, 6, e4557.	2.0	57
23	Recognition of PF4-VWF complexes by heparin-induced thrombocytopenia antibodies contributes to thrombus propagation. Blood, 2020, 135, 1270-1280.	1.4	55
24	Platelet glycoprotein IIb gene expression as a model of megakaryocyte‐specific expression. Stem Cells, 1995, 13, 135-145.	3.2	52
25	Localization of distal regulatory domains in the megakaryocyte-specific platelet basic protein/platelet factor 4 gene locus. Blood, 2001, 98, 610-617.	1.4	52
26	FL11 level during megakaryopoiesis affects thrombopoiesis and platelet biology. Blood, 2017, 129, 3486-3494.	1.4	48
27	GNE variants causing autosomal recessive macrothrombocytopenia without associated muscle wasting. Blood, 2018, 132, 1851-1854.	1.4	48
28	The antigenic complex in HIT binds to B cells via complement and complement receptor 2 (CD21). Blood, 2016, 128, 1789-1799.	1.4	45
29	The disulfide isomerase ERp72 supports arterial thrombosis in mice. Blood, 2017, 130, 817-828.	1.4	45
30	Defective release of $\hat{l}\pm$ granule and lysosome contents from platelets in mouse Hermansky-Pudlak syndrome models. Blood, 2015, 125, 1623-1632.	1.4	43
31	Biocompatible coupling of therapeutic fusion proteins to human erythrocytes. Blood Advances, 2018, 2, 165-176.	5.2	42
32	Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Blood, 2020, 135, 743-754.	1.4	39
33	Endothelial antigen assembly leads to thrombotic complications in heparin-induced thrombocytopenia. Journal of Clinical Investigation, 2017, 127, 1090-1098.	8.2	37
34	Polyreactive IgM initiates complement activation by PF4/heparin complexes through the classical pathway. Blood, 2018, 132, 2431-2440.	1.4	35
35	ldentifying and enriching platelet-producing human stem cell–derived megakaryocytes using factor V uptake. Blood, 2017, 130, 192-204.	1.4	34
36	Platelet-delivered ADAMTS13 inhibits arterial thrombosis and prevents thrombotic thrombocytopenic purpura in murine models. Blood, 2015, 125, 3326-3334.	1.4	30

MORTIMER PONCZ

#	Article	IF	CITATIONS
37	Mechanistic basis of heparin-induced thrombocytopenia. Seminars in Thoracic and Cardiovascular Surgery, 2005, 17, 73-79.	0.6	29
38	Molecular engineering of high affinity single-chain antibody fragment for endothelial targeting of proteins and nanocarriers in rodents and humans. Journal of Controlled Release, 2016, 226, 229-237.	9.9	29
39	Induced Pluripotent Stem Cell–Derived Megakaryocytes and Platelets for Disease Modeling and Future Clinical Applications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2007-2013.	2.4	27
40	T2 Magnetic Resonance: A Diagnostic Platform for Studying Integrated Hemostasis in Whole Blood—Proof of Concept. Clinical Chemistry, 2014, 60, 1174-1182.	3.2	26
41	Signaling Through FcÎ ³ RIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19. Frontiers in Immunology, 2022, 13, 834988.	4.8	26
42	Complement mediates binding and procoagulant effects of ultralarge HIT immune complexes. Blood, 2021, 138, 2106-2116.	1.4	23
43	Collaborative Enhancement of Endothelial Targeting of Nanocarriers by Modulating Platelet-Endothelial Cell Adhesion Molecule-1/CD31 Epitope Engagement. ACS Nano, 2015, 9, 6785-6793.	14.6	22
44	Platelet dense granules begin to selectively accumulate mepacrine during proplatelet formation. Blood Advances, 2017, 1, 1478-1490.	5.2	22
45	Platelet Factor 4 Inhibits and Enhances HIV-1 Infection in a Concentration-Dependent Manner by Modulating Viral Attachment. AIDS Research and Human Retroviruses, 2016, 32, 705-717.	1.1	21
46	Structural and Functional Studies to Define the Molecular Basis by Which Platelet Factor 4 (PF4) Increases Survival of Mice in Lipopolysaccharide (LPS)-Induced Endotoxicity. Blood, 2008, 112, 19-19.	1.4	21
47	Enhancing functional platelet release in vivo from in vitro–grown megakaryocytes using small molecule inhibitors. Blood Advances, 2018, 2, 597-606.	5.2	20
48	FcRn augments induction of tissue factor activity by IgG-containing immune complexes. Blood, 2020, 135, 2085-2093.	1.4	19
49	ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombocytopenic purpura: 2. Pathogenicity in an animal model. Transfusion, 2016, 56, 1775-1785.	1.6	16
50	Rapamycin and bafilomycin A1 alter autophagy and megakaryopoiesis. Platelets, 2017, 28, 82-89.	2.3	15
51	RGS10 and RGS18 differentially limit platelet activation, promote platelet production, and prolong platelet survival. Blood, 2020, 136, 1773-1782.	1.4	13
52	Population based frequency of naturally occurring lossâ€ofâ€function variants in genes associated with platelet disorders. Journal of Thrombosis and Haemostasis, 2021, 19, 248-254.	3.8	13
53	2-O, 3-O-Desulfated Heparin (ODSH) Mitigates Chemotherapy-Induced Thrombocytopenia (CIT) by Blocking the Negative Paracrine Effect of Platelet Factor 4 (PF4) On Megakaryopoiesis. Blood, 2012, 120, 386-386.	1.4	13
54	Characterization of the Murine Platelet IIb Gene and Encoded cDNA. Blood, 1999, 94, 3947-3950.	1.4	12

#	Article	IF	CITATIONS
55	Infused factor VIII–expressing platelets or megakaryocytes as a novel therapeutic strategy for hemophilia A. Blood Advances, 2019, 3, 1368-1378.	5.2	12
56	Platelet-Delivered Factor VIII (FVIII) Decreases Thrombus Stability Blood, 2006, 108, 1602-1602.	1.4	12
57	Molecular and cellular pathogenesis of heparin-induced thrombocytopenia (HIT). Autoimmunity Reviews, 2018, 17, 1046-1052.	5.8	11
58	Structural and Therapeutic Insights from the Species Specificity and in Vivo Antithrombotic Activity of a Novel αIIb-Specific αIIbβ3 Antagonist. Blood, 2008, 112, 256-256.	1.4	11
59	A Targeted Photochemical Microfluidic Vascular Injury Model for in Vitro Thrombosis Studies: Usage in Heparin-Induced Thrombocytopenia (HIT). Blood, 2015, 126, 212-212.	1.4	11
60	Platelet factor 4 mRNA expression in cells from a patient with megakaryoblastic crisis of chronic myelogenous leukemia. Cancer, 1991, 67, 960-964.	4.1	9
61	2-O, 3-O desulfated heparin mitigates murine chemotherapy- and radiation-induced thrombocytopenia. Blood Advances, 2018, 2, 754-761.	5.2	9
62	Dynamic intercellular redistribution of HIT antigen modulates heparin-induced thrombocytopenia. Blood, 2018, 132, 727-734.	1.4	9
63	Preâ€clinical development of a cryopreservable megakaryocytic cell product capable of sustained platelet production in mice. Transfusion, 2019, 59, 3698-3713.	1.6	9
64	Induced Pluripotent Stem Cell-Derived Red Blood Cells, Megakaryocytes, and Platelets: Progress and Challenges. Current Stem Cell Reports, 2018, 4, 310-317.	1.6	8
65	Miniaturized T2MR Magnetic Resonance System for Analysis of Hemostasis and Detection of Impaired and Prothrombotic Blood Disorders. Blood, 2012, 120, 1118-1118.	1.4	6
66	Gp1ba-Cre or Pf4-Cre: pick your poison. Blood, 2019, 133, 287-288.	1.4	5
67	Janus Kinase (Jak) 1 Inhibition Affects Both Megakaryopoiesis and Thrombopoiesis. Blood, 2018, 132, 2559-2559.	1.4	5
68	BACH and the megakaryocyte symphony. Blood, 2005, 105, 3001-3002.	1.4	4
69	Endogenous Platelet PF4 Promotes In Vivo Activated Protein C (APC) Generation and Survival after Lethal Lipopolysaccharide Challenge in Mice: A Potential Physiologic Role for PF4 Blood, 2005, 106, 27-27.	1.4	4
70	Induction of Megakaryocytes From Fibroblasts by p45NF-E2/Maf. Blood, 2011, 118, 908-908.	1.4	3
71	Enhancing therapeutic efficacy of in vivo platelet-targeted gene therapy in hemophilia A mice. Blood Advances, 2020, 4, 5722-5734.	5.2	3
72	A novel role for endoplasmic reticulum protein 46 (ERp46) in platelet function and arterial thrombosis in mice. Blood, 2022, 139, 2050-2065.	1.4	3

#	Article	IF	CITATIONS
73	Defective RAB31-mediated megakaryocytic early endosomal trafficking of VWF, EGFR, and M6PR in <i>RUNX1</i> deficiency. Blood Advances, 2022, 6, 5100-5112.	5.2	3
74	Platelet message and microarrays. Blood, 2003, 101, 2078-2078.	1.4	2
75	Von Willebrand Factor Facilitates Intravascular Dissemination of Microsporidia Encephalitozoon hellem. Frontiers in Cellular and Infection Microbiology, 2021, 11, 694957.	3.9	2
76	Understanding VITT(ual) reality. Blood, 2021, 138, 285-286.	1.4	2
77	Fibrin Generation in Heparin-Induced Thrombocytopenia (HIT): Pathomechanistic Background for Novel Therapy and Prophylaxis. Blood, 2012, 120, 635-635.	1.4	2
78	Megakaryocytes Regulate Hematopoietic Stem Cell Quiescence Via PF4 Secretion. Blood, 2013, 122, 3-3.	1.4	2
79	A Novel Approach for Generating Platelet-Delivered FVIII: Role of Transient LRP1 Expression during Megakaryopoiesis. Blood, 2019, 134, 1102-1102.	1.4	2
80	Personalized Platelet Transfusions: One Step Closer to the Clinic. Cell Stem Cell, 2014, 14, 425-426.	11.1	1
81	Platelets Can Soak It Up and Then Spit It Out. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2544-2545.	2.4	1
82	Hematology Grants Workshop. Hematology American Society of Hematology Education Program, 2003, 2003, 590-596.	2.5	1
83	Expression of Urokinase-Type Plasminogen Activator in Platelets Decreases Oxygen-Induced Lung Injury in Mice Blood, 2004, 104, 688-688.	1.4	1
84	Pathogenic Role of Surface Platelet Factor 4 Complexes in Heparin-Induced Thrombocytopenia: Diagnostic and Therapeutic Implications Blood, 2005, 106, 55-55.	1.4	1
85	Microfluidic and Flow Cytometric Studies Support a Role for Monocytes and Coated Platelets in the Prothrombotic State in Heparin-Induced Thrombocytopenia (HIT). Blood, 2011, 118, 539-539.	1.4	1
86	The NET Effect: Platelet Factor 4 and DNA-Histone Interactions in Sepsis. Blood, 2015, 126, 2197-2197.	1.4	1
87	A Microfluidic Model of Microvascular Inflammation: Characterization and Testing of Endothelial-Targeted Therapeutics. Blood, 2015, 126, 3454-3454.	1.4	1
88	Monocytes Are a Particularly Favorable Target for Surface Platelet Factor 4 (PF4) Antigenic Complex Formation in Heparin-Induced Thrombocytopenia: New Insights into the Thrombotic Risk in HIT. Blood, 2008, 112, 271-271.	1.4	1
89	Infusing Mature Megakaryocytes Into Mice Yields Functional Platelets: Biological and Clinical Implications Blood, 2009, 114, 225-225.	1.4	1
90	Defective Production, Turnover, and Secretion of the Platelet α-Granule Protein P-Selectin In Mice with Disrupted FOG1-NuRD Interaction. Blood, 2010, 116, 547-547.	1.4	1

#	Article	IF	CITATIONS
91	Platelet Factor 4 Levels Inversely Correlate with Platelet Transfusion Needs In Pediatric Patients Treated for Standard Risk Acute Lymphoblastic Leukemia. Blood, 2010, 116, 725-725.	1.4	1
92	Platelet Factor 4 (PF4) Is Selectively Recycled During Megakaryopoiesis. Blood, 2012, 120, 388-388.	1.4	1
93	The Two Phases of Heparin-Induced Thrombocytopenia (HIT): Early Monocyte/Tissue Factor (TF) Phase and Late Platelet Phase. Blood, 2012, 120, 270-270.	1.4	1
94	Fc-Modified Kko: A Novel Therapeutic for Heparin-Induced Thrombocytopenia (HIT), Reversing Both the Thrombocytopenia and Thrombosis. Blood, 2021, 138, 581-581.	1.4	1
95	Dose Escalation Trial of Desulfated Heparin (ODSH) in Septic Peritonitis. Frontiers in Veterinary Science, 2022, 9, 862308.	2.2	1
96	Transcription Factors Involved in Lineage-specific Gene Expression During Megakaryopoiesis. , 0, , 31-49.		0
97	A(nother) day in the life of neonatal platelets. Blood, 2014, 123, 3372-3373.	1.4	0
98	Two Specific Domains on the Upper Surface of the αlib β Propeller Determine the Sensitivity of αlibβ3 for RGD-Containing Peptides Blood, 2005, 106, 2653-2653.	1.4	0
99	Visualizing the Molecular and Cellular Basis of Heparin Induced Thrombocytopenia Blood, 2009, 114, 228-228.	1.4	0
100	The Signaling Molecule CalDAG-GEFI Represents a Novel Target for Antithrombotic Therapy Blood, 2009, 114, 1077-1077.	1.4	0
101	Strategies to Enhance the Efficacy of Platelet-Derived Factor (F) VIII: Studies with Inactivation Resistant FVIII (IR8) and Canine FVIII in Hemophilia A Mice Blood, 2009, 114, 3496-3496.	1.4	0
102	Expansion of Platelets for Transfusion. Blood, 2010, 116, SCI-47-SCI-47.	1.4	0
103	Heparin-Induced Thrombocytopenia Antibodies Inhibit PF4-Dependent Enhancement of Activated Protein C Formation by Binding to Antigenic Complexes Formed with the Chondroitin Sulfate Side-Chain of Thrombomodulin. Blood, 2010, 116, 721-721.	1.4	0
104	"Rolling Recruitment―of Endothelial Cell (EC) Activation in the Prothrombotic Nature of Heparin-Induced Thrombocytopenia (HIT). Blood, 2011, 118, 536-536.	1.4	0
105	Histones, Like Platelet Factor 4 (PF4), Affect Generation of Activated Protein C: Implications for the Pathogenesis of Severe Sepsis. Blood, 2011, 118, 530-530.	1.4	0
106	Targeted Gene Correction of Glanzmann Thrombasthenia Induced Pluripotent Stem Cells Restores Surface Expression and Fibrinogen Binding of Integrin αIlbβ3,. Blood, 2011, 118, 4173-4173.	1.4	0
107	Platelet Factor 4 (PF4) Levels Are Inversely Correlated with Steady-State Platelet Counts and with Nadir Counts in Chemotherapy-Induced Thrombocytopenia (CIT),. Blood, 2011, 118, 3527-3527.	1.4	0
108	FcγRlla Enhances Thrombus Growth in Vitro and in Vivo. Blood, 2011, 118, 191-191.	1.4	0

MORTIMER PONCZ

#	Article	IF	CITATIONS
109	Formation of Procoagulant Platelets in Heparin-Induced Thrombocytopenia (HIT) Follows a Unique Signaling Pathway. Blood, 2011, 118, 197-197.	1.4	Ο
110	Aryl Hydrocarbon Receptor (AhR) Antagonist Stemregenin 1 (SR1) Enhances in Vitro- and in Vivo-Derived Platelets (PLTs) From Human Megakaryocytes (MKs). Blood, 2012, 120, 3450-3450.	1.4	0
111	Bioengineering Factor VIII B-Domain Sequences Improves Function and Efficacy in Hemophilia A Models Blood, 2012, 120, 2208-2208.	1.4	Ο
112	RhoA Is Essential for Maintaining Normal Megakaryocyte Ploidy Distribution and Platelet Generation. Blood, 2012, 120, 385-385.	1.4	0
113	Tissue-Specific Transgene Expression in Induced Pluripotent Stem (iPS) Cell-Derived Megakaryocytes: Correction of Glanzmann Thrombasthenia (GT). Blood, 2012, 120, 387-387.	1.4	Ο
114	Platelet Factor 4 (PF4) Causes Cell Cycle Arrest in Megakaryocytes (Megs) by Inactivating CDC2 (CDK1) and CDK2. Blood, 2012, 120, 1238-1238.	1.4	0
115	Platelet Factor VIII-Induced Megakaryocyte Apoptosis: Implications for Hemophilia A Gene Therapy. Blood, 2012, 120, 2051-2051.	1.4	0
116	Platelet-Targeted, Thrombin-Activatable Fibrinolytic Pro-Drugs As Novel Therapies: Application to the Prothrombotic Disorder of Heparin-Induced Thrombocytopenia (HIT). Blood, 2012, 120, 1171-1171.	1.4	0
117	Novel Murine Models Of Fetal and Neonatal Alloimmune Thrombocytopenia Established In αIIb Deficient and Human αIIb Transgenic Mice. Blood, 2013, 122, 2314-2314.	1.4	Ο
118	Insights Into Thrombopoiesis From Infused Human Megakaryocytes Into Mice. Blood, 2013, 122, 1165-1165.	1.4	0
119	Loss Of Phosphatidylinositol Transfer Proteins (PITPs) Causes Thrombocytopenia Due To a Defect In Thrombopoiesis. Blood, 2013, 122, 2313-2313.	1.4	0
120	Characterization of the Murine Platelet IIb Gene and Encoded cDNA. Blood, 1999, 94, 3947-3950.	1.4	0
121	Atomic Level Description of the Immune Complex That Causes Heparin-Induced Thrombocytopenia (HIT). Blood, 2014, 124, 465-465.	1.4	Ο
122	Inducible Gata1 Suppression As a Novel Strategy to Expand Physiologic Megakaryocyte Production from Embryonic Stem Cells. Blood, 2014, 124, 3846-3846.	1.4	0
123	New Insights into the Prothrombotic State of Heparin-Induced Thrombocytopenia (HIT) Using a Novel Microfluidic System: The Endothelial Lining and "Rolling Barrage―of Activation. Blood, 2014, 124, 574-574.	1.4	0
124	Understanding the Underlying Immune Response in HIT: Uptake of PF4/Heparin Complexes By Monocytes & Dendritic Cells. Blood, 2014, 124, 4197-4197.	1.4	0
125	The Second CGHC Motif of Protein Disulfide Isomerase Mediates Thrombosis. Blood, 2015, 126, 1032-1032.	1.4	0
126	Thrombomodulin Fusion Proteins Coupled to Human Erythrocytes Demonstrate Anti-Thrombotic and Anti-Inflammatory Activity. Blood, 2015, 126, 3493-3493.	1.4	0

#	Article	IF	CITATIONS
127	Towards the Care of Hemophilia a Patients Using Induced Pluripotent Stem Cell (iPSC)-Derived Megakaryocytes (iMks) Expressing Coagulation Factor (F) VIII. Blood, 2015, 126, 2266-2266.	1.4	0
128	Enhancing Functional Platelet Release In Vivo from in Vitro-Grown Megakaryocytes Using the Protein Kinase Inhibitor SU6656. Blood, 2016, 128, 1029-1029.	1.4	0
129	Simultaneous Replacement of Endothelial Thrombomodulin and Plasma Protein C: A Novel Therapeutic Strategy for Sepsis-Induced Disseminated Intravascular Coagulation. Blood, 2016, 128, 2613-2613.	1.4	0
130	Coupling Therapeutics to Human Erythrocytes Demonstrates Target-Dependent Effects on Red Cell Physiology While Preserving Efficacy. Blood, 2016, 128, 701-701.	1.4	0
131	The Inherited Platelet Disorder of RUNX1 Haploinsufficiency (Familial Platelet Disorder with) Tj ETQq1 1 0.784314 Hematopoietic Progenitor Cells: Mechanistic Studies and Drug Correction. Blood, 2019, 134, 220-220.	rgBT /Ov 1.4	verlock 10 Tf O
132	Understanding How Fc-Modification Transforms a Pathogenic Heparin-Induced Thrombocytopenia (HIT)-like Monoclonal Antibody into a Novel Treatment for Sepsis. Blood, 2019, 134, 10-10.	1.4	0
133	In Situ Microscopy Studies of Infused Megakaryocytes: Implications in Thrombopoiesis. Blood, 2021, 138, 4287-4287.	1.4	0
134	Insights into Endogenous Vs Exogenous Cargo-Containing Platelet Alpha-Granules. Blood, 2021, 138, 1028-1028.	1.4	0
135	Utilizing CRISPR-CAS9 Gene Editing Technology in Human Pluripotent Stem Cells to Study Platelet Integrin αIIbβ3 Function. Blood, 2020, 136, 3-3.	1.4	0
136	Complement Regulates the Procoagulant Effects of HIT Immune Complexes. Blood, 2020, 136, 11-12.	1.4	0
137	Exploiting Induced Pluripotent Stem Cells to Unravel Mechanisms in Inherited Platelet/Megakaryocyte Disorders, Blood, 2020, 136, SCI3-SCI3	1.4	0