
Anurag Tandon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10706189/publications.pdf Version: 2024-02-01

ΔΝΠΒΑς ΤΑΝΡΟΝ

#	Article	IF	CITATIONS
1	Alpha-Synuclein Targeting Therapeutics for Parkinson's Disease and Related Synucleinopathies. Frontiers in Neurology, 2022, 13, .	2.4	16
2	α-Synuclein Regulates Peripheral Insulin Secretion and Glucose Transport. Frontiers in Aging Neuroscience, 2021, 13, 665348.	3.4	12
3	Microfluidic electric parallel egg-laying assay and application to in-vivo toxicity screening of microplastics using C. elegans. Science of the Total Environment, 2021, 783, 147055.	8.0	10
4	Electric egg-laying: a new approach for regulating <i>C. elegans</i> egg-laying behaviour in a microchannel using electric field. Lab on A Chip, 2021, 21, 821-834.	6.0	5
5	Viral alpha-synuclein knockdown prevents spreading synucleinopathy. Brain Communications, 2021, 3, fcab247.	3.3	5
6	α-Synuclein strains target distinct brain regions and cell types. Nature Neuroscience, 2020, 23, 21-31.	14.8	195
7	Parallel-Channel Electrotaxis and Neuron Screening of Caenorhabditis elegans. Micromachines, 2020, 11, 756.	2.9	8
8	Semi-mobile C. elegans electrotaxis assay for movement screening and neural monitoring of Parkinson's disease models. Sensors and Actuators B: Chemical, 2020, 316, 128064.	7.8	6
9	Studying Parkinson's disease using Caenorhabditis elegans models in microfluidic devices. Integrative Biology (United Kingdom), 2019, 11, 186-207.	1.3	31
10	Noninvasive delivery of an αâ€synuclein gene silencing vector with magnetic resonance–guided focused ultrasound. Movement Disorders, 2018, 33, 1567-1579.	3.9	49
11	Import and Export of Misfolded α-Synuclein. Frontiers in Neuroscience, 2018, 12, 344.	2.8	86
12	The Biology and Pathobiology of α-Synuclein. , 2017, , 109-130.		1
13	α-Synuclein-Based Animal Models of Parkinson's Disease: Challenges and Opportunities in a New Era. Trends in Neurosciences, 2016, 39, 750-762.	8.6	120
14	PINK1 deficiency enhances autophagy and mitophagy induction. Molecular and Cellular Oncology, 2016, 3, e1046579.	0.7	18
15	Effects of Serine 129 Phosphorylation on α-Synuclein Aggregation, Membrane Association, and Internalization. Journal of Biological Chemistry, 2016, 291, 4374-4385.	3.4	136
16	α-Synuclein Membrane Association Is Regulated by the Rab3a Recycling Machinery and Presynaptic Activity*. Journal of Biological Chemistry, 2013, 288, 7438-7449.	3.4	96
17	Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site. Scientific Reports, 2012, 2, 1-8.	3.3	31
18	Characterization of Semisynthetic and Naturally Nα-Acetylated α-Synuclein in Vitro and in Intact Cells. Journal of Biological Chemistry, 2012, 287, 28243-28262.	3.4	148

ANURAG TANDON

#	Article	IF	CITATIONS
19	Effect of Ser-129 Phosphorylation on Interaction of α-Synuclein with Synaptic and Cellular Membranes. Journal of Biological Chemistry, 2011, 286, 35863-35873.	3.4	49
20	Reciprocal Effects of α-Synuclein Overexpression and Proteasome Inhibition in Neuronal Cells and Tissue. Neurotoxicity Research, 2010, 17, 215-227.	2.7	19
21	Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission. Journal of Biological Chemistry, 2009, 284, 13843-13855.	3.4	845
22	Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1716-1721.	7.1	228
23	Systemic administration of a proteasome inhibitor does not cause nigrostriatal dopamine degeneration. Brain Research, 2007, 1168, 83-89.	2.2	26
24	TMP21 is a presenilin complex component that modulates γ-secretase but not ɛ-secretase activity. Nature, 2006, 440, 1208-1212.	27.8	286
25	Cytosolic Proteins Regulate α-Synuclein Dissociation from Presynaptic Membranes. Journal of Biological Chemistry, 2006, 281, 32148-32155.	3.4	49
26	Wild-type PINK1 Prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-related Mutations. Journal of Biological Chemistry, 2005, 280, 34025-34032.	3.4	284
27	Analysis of the PINK1 Gene in a Large Cohort of Cases With Parkinson Disease. Archives of Neurology, 2004, 61, 1898-904.	4.5	162
28	α-Synuclein-synaptosomal membrane interactions. FEBS Journal, 2004, 271, 3180-3189.	0.2	78
29	Brain levels of CDK5 activator p25 are not increased in Alzheimer's or other neurodegenerative diseases with neurofibrillary tangles. Journal of Neurochemistry, 2003, 86, 572-581.	3.9	81
30	APH-1 Interacts with Mature and Immature Forms of Presenilins and Nicastrin and May Play a Role in Maturation of Presenilin·Nicastrin Complexes. Journal of Biological Chemistry, 2003, 278, 7374-7380.	3.4	140
31	Presenilin 1 and Presenilin 2 Have Differential Effects on the Stability and Maturation of Nicastrin in Mammalian Brain. Journal of Biological Chemistry, 2003, 278, 19974-19979.	3.4	34
32	Mature Glycosylation and Trafficking of Nicastrin Modulate Its Binding to Presenilins. Journal of Biological Chemistry, 2002, 277, 28135-28142.	3.4	142
33	The presenilins. Genome Biology, 2002, 3, reviews3014.1.	9.6	61
34	The levels of mature glycosylated nicastrin are regulated and correlate with Î ³ -secretase processing of amyloid Î ² -precursor protein. Journal of Neurochemistry, 2002, 83, 1065-1071.	3.9	38
35	Genetic markers in the diagnosis of Alzheimer's disease. Journal of Alzheimer's Disease, 2001, 3, 293-304.	2.6	9
36	Nicastrin binds to membrane-tethered Notch. Nature Cell Biology, 2001, 3, 751-754.	10.3	124

ANURAG TANDON

#	Article	IF	CITATIONS
37	Molecular genetics of Alzheimer's disease: the role of β-amyloid and the presenilins. Current Opinion in Neurology, 2000, 13, 377-384.	3.6	75
38	Mutation of the conserved N-terminal cysteine (Cys92) of human presenilin 1 causes increased Aβ42 secretion in mammalian cells but impaired Notch/lin-l2 signalling in C. elegans. NeuroReport, 2000, 11, 3227-3230.	1.2	32
39	Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature, 2000, 407, 48-54.	27.8	895
40	Carboxyl-terminal Fragments of Alzheimer β-Amyloid Precursor Protein Accumulate in Restricted and Unpredicted Intracellular Compartments in Presenilin 1-deficient Cells. Journal of Biological Chemistry, 2000, 275, 36794-36802.	3.4	71
41	Mutation of Conserved Aspartates Affects Maturation of Both Aspartate Mutant and Endogenous Presenilin 1 and Presenilin 2 Complexes. Journal of Biological Chemistry, 2000, 275, 27348-27353.	3.4	53
42	Mutations in GDI1 are responsible for X-linked non-specific mental retardation. Nature Genetics, 1998, 19, 134-139.	21.4	304
43	Differential Regulation of Exocytosis by Calcium and CAPS in Semi-Intact Synaptosomes. Neuron, 1998, 21, 147-154.	8.1	120
44	Structure and mutational analysis of Rab GDP-dissociation inhibitor. Nature, 1996, 381, 42-48.	27.8	169