Anice Sabag-Daigle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10706059/publications.pdf Version: 2024-02-01

ANICE SABAC-DAICLE

#	Article	IF	CITATIONS
1	Chemical and pathogen-induced inflammation disrupt the murine intestinal microbiome. Microbiome, 2017, 5, 47.	11.1	125
2	Fructose-Asparagine Is a Primary Nutrient during Growth of Salmonella in the Inflamed Intestine. PLoS Pathogens, 2014, 10, e1004209.	4.7	65
3	Are There Acyl-Homoserine Lactones within Mammalian Intestines?. Journal of Bacteriology, 2013, 195, 173-179.	2.2	55
4	The Acyl Homoserine Lactone Receptor, SdiA, of Escherichia coli and Salmonella enterica Serovar Typhimurium Does Not Respond to Indole. Applied and Environmental Microbiology, 2012, 78, 5424-5431.	3.1	50
5	A metabolic intermediate of the fructose-asparagine utilization pathway inhibits growth of a Salmonella fraB mutant. Scientific Reports, 2016, 6, 28117.	3.3	21
6	Expl and Phzl Are Descendants of the Long Lost Cognate Signal Synthase for SdiA. PLoS ONE, 2012, 7, e47720.	2.5	20
7	Sugar-Phosphate Toxicities. Microbiology and Molecular Biology Reviews, 2021, 85, e0012321.	6.6	19
8	The SdiA-Regulated Gene <i>srgE</i> Encodes a Type III Secreted Effector. Journal of Bacteriology, 2014, 196, 2301-2312.	2.2	18
9	Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae. Frontiers in Cellular and Infection Microbiology, 2015, 5, 47.	3.9	15
10	Identification of Bacterial Species That Can Utilize Fructose-Asparagine. Applied and Environmental Microbiology, 2018, 84, .	3.1	15
11	Measurement of Fructose–Asparagine Concentrations in Human and Animal Foods. Journal of Agricultural and Food Chemistry, 2018, 66, 212-217.	5.2	15
12	Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection. Infection and Immunity, 2016, 84, 2131-2140.	2.2	13
13	Salmonella-Mediated Inflammation Eliminates Competitors for Fructose-Asparagine in the Gut. Infection and Immunity, 2018, 86, .	2.2	12
14	Salmonella FraE, an Asparaginase Homolog, Contributes to Fructose-Asparagine but Not Asparagine Utilization. Journal of Bacteriology, 2017, 199, .	2.2	10
15	Integrated Use of Biochemical, Native Mass Spectrometry, Computational, and Genome-Editing Methods to Elucidate the Mechanism of a deglycase. Journal of Molecular Biology, 2019, 431, 4497-4513.	4.2	9
16	Optimization of proteomics sample preparation for identification of host and bacterial proteins in mouse feces. Analytical and Bioanalytical Chemistry, 2022, 414, 2317.	3.7	3