
Amit Singhania

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/107058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Non-thermal Plasma-Assisted Catalytic Oxidation for Methane Emissions Abatement as an Exhaust Aftertreatment Technology. Plasma Chemistry and Plasma Processing, 2022, 42, 709-730.	2.4	1
2	A design of a fixed bed plasma DRIFTS cell for studying the NTP-assisted heterogeneously catalysed reactions. Catalysis Science and Technology, 2020, 10, 1458-1466.	4.1	17
3	Ce1â^'x O2Cux Nanoparticles: Synthesis, Characterization and Catalytic Activity for Phenol Degradation. Journal of Nanoscience and Nanotechnology, 2019, 19, 5220-5226.	0.9	2
4	Effect of rare earth (RE – La, Pr, Nd) metal-doped ceria nanoparticles on catalytic hydrogen iodide decomposition for hydrogen production. International Journal of Hydrogen Energy, 2018, 43, 4818-4825.	7.1	39
5	TiO2 as a catalyst for hydrogen production from hydrogen-iodide in thermo-chemical water-splitting sulfur-iodine cycle. Fuel, 2018, 221, 393-398.	6.4	18
6	Performance of Activatedâ€Carbonâ€Supported Ni, Co, and Ni–Co Catalysts for Hydrogen Iodide Decomposition in a Thermochemical Waterâ€Splitting Sulfur–Iodine Cycle. Energy Technology, 2018, 6, 1104-1111.	3.8	7
7	Low-Temperature CO Oxidation: Effect of the Second Metal on Activated Carbon Supported Pd Catalysts. Catalysis Letters, 2018, 148, 946-952.	2.6	13
8	Catalytic Decomposition of Hydrogen-Iodide Over Nanocrystalline Ceria Promoted by Transition Metal Oxides for Hydrogen Production in Sulfur–Iodine Thermo-Chemical Cycle. Catalysis Letters, 2018, 148, 1416-1422.	2.6	13
9	Hydrogen-iodide decomposition over Pd CeO 2 nanocatalyst for hydrogen production in sulfur-iodine thermochemical cycle. International Journal of Hydrogen Energy, 2018, 43, 3886-3891.	7.1	24
10	Highly Active CeO2 Nanocatalysts for Low-Temperature CO Oxidation. Russian Journal of Physical Chemistry A, 2018, 92, 1900-1906.	0.6	2
11	CeO2â^'xNx Solid Solutions: Synthesis, Characterization, Electronic Structure and Catalytic Study for CO Oxidation. Catalysis Letters, 2018, 148, 2001-2007.	2.6	8
12	Synthesis, Characterization and Catalytic Activity of CeO ₂ and Ir-doped CeO ₂ Nanoparticles for Hydrogen Iodide Decomposition. Chemistry Letters, 2018, 47, 1224-1227.	1.3	1
13	Catalytic performance of carbon nanotubes supported palladium catalyst for hydrogen production from hydrogen iodide decomposition in thermochemical sulfur iodine cycle. Renewable Energy, 2018, 127, 509-513.	8.9	22
14	Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation. Journal of Nanoscience and Nanotechnology, 2018, 18, 4614-4620.	0.9	18
15	Hydrogen production from the decomposition of hydrogen iodide over nanosized nickel-oxide-zirconia catalysts prepared by solution-combustion techniques. Catalysis Communications, 2017, 93, 5-9.	3.3	21
16	Development of catalysts for hydrogen production from hydrogen iodide decomposition in thermo-chemical water-splitting sulfur-iodine cycle: A review. Catalysis Reviews - Science and Engineering, 2017, 59, 446-489.	12.9	21
17	High Surface Area M (M = La, Pr, Nd, and Pm)-Doped Ceria Nanoparticles: Synthesis, Characterization, and Activity Comparison for CO Oxidation. Industrial & Engineering Chemistry Research, 2017, 56, 13594-13601.	3.7	61
18	Low-temperature CO oxidation over Cu/Pt co-doped ZrO ₂ nanoparticles synthesized by solution combustion. Beilstein Journal of Nanotechnology, 2017, 8, 1546-1552.	2.8	20

Amit Singhania

#	Article	IF	CITATIONS
19	Nanocrystalline ZrO ₂ and Pt-doped ZrO ₂ catalysts for low-temperature CO oxidation. Beilstein Journal of Nanotechnology, 2017, 8, 264-271.	2.8	36
20	Catalytic performance of bimetallic Ni-Pt nanoparticles supported on activated carbon, gamma-alumina, zirconia, and ceria for hydrogen production in sulfur-iodine thermochemical cycle. International Journal of Hydrogen Energy, 2016, 41, 10538-10546.	7.1	30
21	Platinum-titania catalysts for hydrogen-iodide decomposition in sulfur-iodine cycle for hydrogen production. Chemistry Letters, 0, , .	1.3	Ο