
Anil Koul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10704776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of 3-({5-Chloro-1-[3-(methylsulfonyl)propyl]-1 <i>H</i> -indol-2-yl}methyl)-1-(2,2,2-trifluoroethyl)-1,3-dihydro-2 <i>H< (JNJ-53718678), a Potent and Orally Bioavailable Fusion Inhibitor of Respiratory Syncytial Virus. Journal of Medicinal Chemistry, 2020, 63, 8046-8058.</i>	:/i>-imidazo 6.4	o[4,5- <i>c⊲ 16</i>
2	Antiviral Activity of Oral JNJ-53718678 in Healthy Adult Volunteers Challenged With Respiratory Syncytial Virus: A Placebo-Controlled Study. Journal of Infectious Diseases, 2018, 218, 748-756.	4.0	57
3	Targeting Energy Metabolism in <i>Mycobacterium tuberculosis</i> , a New Paradigm in Antimycobacterial Drug Discovery. MBio, 2017, 8, .	4.1	157
4	Therapeutic efficacy of a respiratory syncytial virus fusion inhibitor. Nature Communications, 2017, 8, 167.	12.8	58
5	Synthesis, characterization and biological activity of fluorescently labeled bedaquiline analogues. RSC Advances, 2016, 6, 108708-108716.	3.6	8
6	Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nature Chemical Biology, 2016, 12, 87-93.	8.0	121
7	Structure of the mycobacterial ATP synthase F _o rotor ring in complex with the anti-TB drug bedaquiline. Science Advances, 2015, 1, e1500106.	10.3	224
8	Bactericidal mode of action of bedaquiline. Journal of Antimicrobial Chemotherapy, 2015, 70, 2028-2037.	3.0	161
9	The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Scientific Reports, 2015, 5, 10333.	3.3	101
10	Antiviral Activity of TMC353121, a Respiratory Syncytial Virus (RSV) Fusion Inhibitor, in a Non-Human Primate Model. PLoS ONE, 2015, 10, e0126959.	2.5	30
11	Acquired Resistance of Mycobacterium tuberculosis to Bedaquiline. PLoS ONE, 2014, 9, e102135.	2.5	320
12	Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nature Communications, 2014, 5, 3369.	12.8	219
13	The ATP synthase inhibitor bedaquiline interferes with small-molecule efflux in Mycobacterium smegmatis. Journal of Antibiotics, 2014, 67, 835-837.	2.0	18
14	Advances and strategies in discovery of new antibacterials for combating metabolically resting bacteria. Drug Discovery Today, 2013, 18, 250-255.	6.4	24
15	Novel Antibiotics Targeting Respiratory ATP Synthesis in Gram-Positive Pathogenic Bacteria. Antimicrobial Agents and Chemotherapy, 2012, 56, 4131-4139.	3.2	79
16	The challenge of new drug discovery for tuberculosis. Nature, 2011, 469, 483-490.	27.8	887
17	Probing the Interaction of the Diarylquinoline TMC207 with Its Target Mycobacterial ATP Synthase. PLoS ONE, 2011, 6, e23575.	2.5	110
18	Mycobacterial ATP synthase as drug target. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 27.	1.0	0

ANIL KOUL

#	Article	IF	CITATIONS
19	Respiratory ATP synthesis: the new generation of mycobacterial drug targets?. FEMS Microbiology Letters, 2010, 308, 1-7.	1.8	72
20	Essentiality of FASII pathway for Staphylococcus aureus. Nature, 2010, 463, E3-E3.	27.8	142
21	Pharmacokinetics-Pharmacodynamics of a Respiratory Syncytial Virus Fusion Inhibitor in the Cotton Rat Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 4534-4539.	3.2	23
22	Respiratory syncytial virus: a prioritized or neglected target?. Future Medicinal Chemistry, 2010, 2, 1523-1527.	2.3	13
23	Selectivity of TMC207 towards Mycobacterial ATP Synthase Compared with That towards the Eukaryotic Homologue. Antimicrobial Agents and Chemotherapy, 2009, 53, 1290-1292.	3.2	203
24	Diarylquinolines Are Bactericidal for Dormant Mycobacteria as a Result of Disturbed ATP Homeostasis. Journal of Biological Chemistry, 2008, 283, 25273-25280.	3.4	297
25	A computational model of the inhibition of Mycobacterium tuberculosis ATPase by a new drug candidate R207910. Proteins: Structure, Function and Bioinformatics, 2007, 67, 971-980.	2.6	113
26	Diarylquinolines target subunit c of mycobacterial ATP synthase. Nature Chemical Biology, 2007, 3, 323-324.	8.0	475
27	Transcriptional Control of the Mycobacterial <i>embCAB</i> Operon by PknH through a Regulatory Protein, EmbR, In Vivo. Journal of Bacteriology, 2006, 188, 2936-2944.	2.2	92
28	Role of Protein Kinase G in Growth and Glutamine Metabolism of Mycobacterium bovis BCG. Journal of Bacteriology, 2005, 187, 5852-5856.	2.2	57
29	Interplay between mycobacteria and host signalling pathways. Nature Reviews Microbiology, 2004, 2, 189-202.	28.6	321
30	Protein Kinase G from Pathogenic Mycobacteria Promotes Survival Within Macrophages. Science, 2004, 304, 1800-1804.	12.6	494
31	Nucleoside diphosphate kinase ofMycobacterium tuberculosisacts as GTPase-activating protein for Rho-GTPases. FEBS Letters, 2004, 571, 212-216.	2.8	31
32	Disruption of <i>mptpB</i> impairs the ability of <i>Mycobacterium tuberculosis</i> to survive in guinea pigs. Molecular Microbiology, 2003, 50, 751-762.	2.5	174
33	Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. FEBS Journal, 2003, 270, 625-634.	0.2	68
34	Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine–threonine kinases PknA and PknB. Biochemical and Biophysical Research Communications, 2003, 311, 112-120.	2.1	57
35	Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology (United Kingdom), 2001, 147, 2307-2314.	1.8	95
36	Cloning and Characterization of Secretory Tyrosine Phosphatases of <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2000, 182, 5425-5432.	2.2	170