Francisco José Krug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10704333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser-induced breakdown spectroscopy for analysis of plant materials: A review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 71-72, 3-13.	2.9	156
2	Comparison of univariate and multivariate calibration for the determination of micronutrients in pellets of plant materials by laser induced breakdown spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 66-74.	2.9	114
3	Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 369-377.	2.9	104
4	Currents on Ultrasoundâ€Assisted Extraction for Sample Preparation and Spectroscopic Analytes Determination. Applied Spectroscopy Reviews, 2006, 41, 305-321.	6.7	71
5	Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1151-1158.	2.9	70
6	Recent advances in LIBS and XRF for the analysis of plants. Journal of Analytical Atomic Spectrometry, 2018, 33, 919-944.	3.0	67
7	In vivo studies on lead content of deciduous teeth superficial enamel of preschool children. Science of the Total Environment, 2004, 320, 25-35.	8.0	66
8	Optimization and validation of a LIBS method for the determination of macro and micronutrients in sugar cane leaves. Journal of Analytical Atomic Spectrometry, 2010, 25, 1453.	3.0	64
9	Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1073-1078.	2.9	53
10	Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 100, 129-136.	2.9	53
11	Evaluation of grinding methods for pellets preparation aiming at the analysis of plant materials by laser induced breakdown spectrometry. Talanta, 2011, 85, 1744-1750.	5.5	50
12	Simultaneous optimization by neuro-genetic approach for analysis of plant materials by laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 565-572.	2.9	49
13	Lead contents in the surface enamel of deciduous teeth sampled in vivo from children in uncontaminated and in lead-contaminated areas. Environmental Research, 2007, 104, 337-345.	7.5	46
14	Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Analytica Chimica Acta, 2015, 876, 26-38.	5.4	46
15	Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation. Analytica Chimica Acta, 2004, 512, 329-337.	5.4	44
16	A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: A case study with pellets of sugar cane leaves. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 86, 137-141.	2.9	44
17	Influence of particle size distribution on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 105, 130-135.	2.9	44
18	Effects of laser focusing and fluence on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 74-75, 162-168.	2.9	43

#	Article	IF	CITATIONS
19	Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials. Journal of Analytical Atomic Spectrometry, 2014, 29, 1667-1674.	3.0	41
20	Evaluation of Femtosecond Laser-Induced Breakdown Spectroscopy for Analysis of Animal Tissues. Applied Spectroscopy, 2008, 62, 1137-1143.	2.2	40
21	Evaluation of laser induced breakdown spectrometry for the determination of macro and micronutrients in pharmaceutical tablets. Journal of Analytical Atomic Spectrometry, 2010, 25, 803.	3.0	39
22	Cryogenic sample grinding for copper, lead and manganese determination in human teeth by slurry sampling GFAAS. Journal of Analytical Atomic Spectrometry, 2003, 18, 939-945.	3.0	37
23	Multipurpose flow injection system. Part 1. Programmable dilutions and standard additions for plant digests analysis by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 1992, 7, 865-868.	3.0	35
24	Determination of Cd, Cr and Pb in phosphate fertilizers by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 97, 42-48.	2.9	35
25	Determination of silicon in plant materials by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 83-84, 61-65.	2.9	32
26	Direct analysis of plant leaves by EDXRF and LIBS: microsampling strategies and cross-validation. Journal of Analytical Atomic Spectrometry, 2015, 30, 1646-1654.	3.0	26
27	Melted Paraffin Wax as an Innovative Liquid and Solid Extractant for Elemental Analysis by Laser-Induced Breakdown Spectroscopy. Analytical Chemistry, 2017, 89, 2807-2815.	6.5	23
28	Simplifying Sample Preparation for Soil Fertility Analysis by X-ray Fluorescence Spectrometry. Sensors, 2019, 19, 5066.	3.8	23
29	Direct determination of lead in sweet fruit-flavored powder drinks by electrothermal atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1998, 53, 601-611.	2.9	21
30	Accumulation and spatial distribution of arsenic and phosphorus in the fern Pityrogramma calomelanos evaluated by micro X-ray fluorescence spectrometry. Journal of Analytical Atomic Spectrometry, 2015, 30, 2375-2383.	3.0	18
31	Flow injection calibration of inductively coupled plasma atomic emission spectrometry using the generalised standard additions method. Journal of Analytical Atomic Spectrometry, 1988, 3, 673-678.	3.0	17
32	Multi-Sensor Approach for Tropical Soil Fertility Analysis: Comparison of Individual and Combined Performance of VNIR, XRF, and LIBS Spectroscopies. Agronomy, 2021, 11, 1028.	3.0	15
33	A chemometric approach exploring Derringer's desirability function for the simultaneous determination of Cd, Cr, Ni and Pb in micronutrient fertilizers by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 154, 25-32.	2.9	12
34	Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 94-95, 27-33.	2.9	11
35	Mercury Amalgam Diffusion in Human Teeth Probed Using Femtosecond LIBS. Applied Spectroscopy, 2017, 71, 659-669.	2.2	9
36	Spectral data of tropical soils using dry-chemistry techniques (VNIR, XRF, and LIBS): A dataset for soil fertility prediction. Data in Brief, 2022, 41, 108004.	1.0	6

#	ARTICLE	IF	CITATIONS
37	Evaluation of electrodeposited tungsten chemical modifier for direct determination of chromium in urine by ETAAS. Microchemical Journal, 2004, 78, 7-13.	4.5	4
38	Evaluation of W-Rh permanent modifier for lead determination in sugar by graphite furnace atomic absorption spectrometry. Sensing and Instrumentation for Food Quality and Safety, 2007, 1, 176-182.	1.5	2