
Keng Boon Wee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10702709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature, 2015, 523, 96-100.	27.8	317
2	PTBP1-Mediated Alternative Splicing Regulates the Inflammatory Secretome and the Pro-tumorigenic Effects of Senescent Cells. Cancer Cell, 2018, 34, 85-102.e9.	16.8	152
3	Akt versus p53 in a Network of Oncogenes and Tumor Suppressor Genes Regulating Cell Survival and Death. Biophysical Journal, 2006, 91, 857-865.	0.5	81
4	Oscillations of the p53-Akt Network: Implications on Cell Survival and Death. PLoS ONE, 2009, 4, e4407.	2.5	65
5	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. Cell Reports, 2016, 15, 2597-2607.	6.4	47
6	SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements. Cell Discovery, 2018, 4, 33.	6.7	40
7	Posttranslational Regulation of the Exon Skipping Machinery Controls Aberrant Splicing in Leukemia. Cancer Discovery, 2020, 10, 1388-1409.	9.4	37
8	Dynamics of Co-Transcriptional Pre-mRNA Folding Influences the Induction of Dystrophin Exon Skipping by Antisense Oligonucleotides. PLoS ONE, 2008, 3, e1844.	2.5	33
9	Dual Masking of Specific Negative Splicing Regulatory Elements Resulted in Maximal Exon 7 Inclusion of SMN2 Gene. Molecular Therapy, 2014, 22, 854-861.	8.2	27
10	A Prospective Study in the Rational Design of Efficient Antisense Oligonucleotides for Exon Skipping in the <i>DMD</i> Gene. Human Gene Therapy, 2012, 23, 781-790.	2.7	23
11	Transcription Factor Oscillations Induce Differential Gene Expressions. Biophysical Journal, 2012, 102, 2413-2423.	0.5	23
12	Induced-Decay of Glycine Decarboxylase Transcripts as an Anticancer Therapeutic Strategy for Non-Small-Cell Lung Carcinoma. Molecular Therapy - Nucleic Acids, 2017, 9, 263-273.	5.1	22
13	PRDM15 is a key regulator of metabolism critical to sustain B-cell lymphomagenesis. Nature Communications, 2020, 11, 3520.	12.8	20
14	Splice-Switching Antisense Oligonucleotides as a Targeted Intrinsic Engineering Tool for Generating Armored Redirected T Cells. Nucleic Acid Therapeutics, 2021, 31, 145-154.	3.6	3
15	Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance. PLoS Computational Biology, 2016, 12. e1004663.	3.2	1