Toshihiro Moriga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1070181/publications.pdf

Version: 2024-02-01

279798 276875 2,038 125 23 41 citations g-index h-index papers 126 126 126 2449 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phase Relationships and Physical Properties of Homologous Compounds in the Zinc Oxideâ€Indium Oxide System. Journal of the American Ceramic Society, 1998, 81, 1310-1316.	3.8	172
2	Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. Journal of Catalysis, 2015, 326, 43-53.	6.2	162
3	Crystal structure analyses of the pyrochlore and fluorite-type Zr2Gd2O7 and anti-phase domain structure. Solid State Ionics, 1989, 31, 319-328.	2.7	105
4	Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets. Vacuum, 2002, 66, 505-509.	3.5	73
5	Optical-luminescence yield spectra produced by x-ray excitation. Physical Review B, 1993, 47, 6918-6930.	3.2	72
6	ZnO–SnO2 transparent conductive films deposited by opposed target sputtering system of ZnO and SnO2 targets. Vacuum, 2004, 74, 607-611.	3.5	66
7	Structures and Physical Properties of Films Deposited by Simultaneous DC Sputtering of ZnO and In2O3 or ITO Targets. Journal of Solid State Chemistry, 2000, 155, 312-319.	2.9	65
8	Reaction Mechanism of Metal Silicide Mg2Si for Li Insertion. Journal of Solid State Chemistry, 2000, 153, 386-390.	2.9	61
9	Transparent conducting amorphous Zn–Sn–O films deposited by simultaneous dc sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1705-1710.	2.1	56
10	7Li NMR study on Li+ ionic diffusion and phase transition in LixCoO2. Solid State Ionics, 2006, 177, 821-826.	2.7	53
11	Surface and bulk properties, catalytic activities and selectivities in methane oxidation on near-stoichiometric calcium hydroxyapatites. Journal of Materials Chemistry, 1996, 6, 459.	6.7	51
12	Local structure around platinum in Pt/C catalysts employed for liquid-phase dehydrogenation of decalin in the liquid-film state under reactive distillation conditions. Applied Catalysis A: General, 2004, 266, 251-255.	4.3	48
13	Electrical and Optical Properties of Transparent Conducting Homologous Compounds in the Indium–Gallium–Zinc Oxide System. Journal of the American Ceramic Society, 1999, 82, 2705-2710.	3.8	45
14	Effect of components in electrodes on sintering characteristics of Ce0.9Gd0.1O1.95 electrolyte in intermediate-temperature solid oxide fuel cells during fabrication. Journal of Power Sources, 2006, 157, 688-694.	7.8	43
15	Synthesis, Crystal Structure, and Properties of Oxygen-Deficient Lanthanum Nickelate LaNiO3â^'x(0 â‰ x â‰ p Tj E	ETQq1 1	0.784314 rgB
16	Effects of fine structure changes of strontium hydroxyapatites on ion-exchange properties with divalent cations. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 4305.	1.7	41
17	Enhancement of the catalytic activities in propane oxidation and H–D exchangeability of hydroxyl groups by the incorporation with cobalt intoAstrontium hydroxyapatite. Journal of Catalysis, 2003, 214, 8-14.	6.2	40
18	Crystal Structures and Electrical and Optical Properties of MgIn2â^'xGaxO4Solid Solutions. Journal of Solid State Chemistry, 1999, 142, 206-213.	2.9	34

#	Article	IF	Citations
19	Effects of the Thermal Stability and the Fine Structure Changes of Strontium Hydroxyapatites Ion-Exchanged with Lead on Methane Oxidation in the Presence and Absence of Tetrachloromethane. Journal of Catalysis, 1998, 176, 25-34.	6.2	32
20	Crystal and electronic band structures of homologous compounds Zn In2O+3 by Rietveld analysis and first-principle calculation. Materials Research Bulletin, 2009, 44, 432-436.	5.2	27
21	Superior electrochemical performance of a novel LiFePO ₄ /C/CNTs composite for aqueous rechargeable lithium-ion batteries. Physical Chemistry Chemical Physics, 2020, 22, 1953-1962.	2.8	27
22	Film properties of ZnO:Al films deposited by co-sputtering of ZnO:Al and contaminated Zn targets with Co, Mn and Cr. Vacuum, 2002, 66, 511-515.	3.5	26
23	Calcium–Lead Hydroxyapatites: Thermal and Structural Properties and the Oxidation of Methane. Journal of Solid State Chemistry, 1998, 135, 86-95.	2.9	24
24	In Situ XRD and In Situ IR Spectroscopic Analyses of Structural Change of Goethite in Methane Oxidation. Journal of Solid State Chemistry, 2001, 156, 225-229.	2.9	22
25	Al-impurity-doped transparent conductive oxide films of In2O3â^ZnO system. Vacuum, 2004, 74, 683-687.	3.5	22
26	Blue-shift of absorption edge in LaTiO2N by controlling the anion nonstoichiometry. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2818-2822.	1.8	22
27	Luminescence enhancement of Eu2+, Ce3+ co-doped Ba3Si5O13â~ÎNÎ phosphors. Journal of Solid State Chemistry, 2010, 183, 620-623.	2.9	22
28	Preparation, Characterization, and Thermal Stability of Lead Hydroxyapatite. Journal of Solid State Chemistry, 1999, 143, 296-302.	2.9	21
29	Effect of insertion of thin ZnO layer in transparent conductive ZnO:Al film. Thin Solid Films, 2001, 386, 267-270.	1.8	21
30	Characterization of ZnO–In2O3 transparent conducting films by pulsed laser deposition. Materials Research Bulletin, 2005, 40, 1052-1058.	5.2	20
31	Synthesis and evaluation of the SERS effect of Fe3O4–Ag Janus composite materials for separable, highly sensitive substrates. RSC Advances, 2019, 9, 2877-2884.	3.6	19
32	Characterization of Calcium, Strontium, Barium and Lead Hydroxyapatites: X-ray Diffraction, Photoelectron, Extended X-ray Absorption Fine Structure and MAS NMR Spectroscopies. Bulletin of the Chemical Society of Japan, 2001, 74, 187-192.	3.2	18
33	The properties of transparent conductive In–Ga–Zn oxide films produced byÂpulsed laser deposition. Vacuum, 2008, 83, 552-556.	3.5	17
34	Preparation, crystal structure, and superconductive characteristics of new oxynitrides (Nb1a^'M)(N1a^'O) Tj ETC	0q0 <u>0</u> ,0 rgl	BT /Overlock 1
35	Synthesis of Vaterite by Carbonation Process in Aqueous System. Journal of the Ceramic Society of Japan, 1996, 104, 1081-1084.	1.3	15
36	Influence of Cation Nonstoichiometry on the Optical Properties of the Perovskite-type Oxynitride LaTiO2N. Journal of the Ceramic Society of Japan, 2007, 115, 637-639.	1.1	15

#	Article	IF	CITATIONS
37	Direct Detection of a Phase Change in PdO/CeO2 Supported on .CHIAl2O3 by Means of in situ High-Temperature Measurements of XRD and FTIR. Analytical Sciences, 2004, 20, 1069-1073.	1.6	14
38	Relationship between anion and cation nonstoichiometries and valence state of titanium in perovskite-type oxynitrides LaTiO2N. Journal of the Ceramic Society of Japan, 2009, 117, 76-81.	1.1	14
39	Changes in the local structure and Li+ ion dynamics in lithium manganese oxides prepared by mechanical milling. Solid State Ionics, 2010, 181, 1359-1365.	2.7	13
40	Catalytic Activity of Iron Oxides Supported on \hat{I}^3 -Al ₂ O ₃ for Methane Oxidation. Journal of the Japan Petroleum Institute, 2005, 48, 223-228.	0.6	12
41	Structural and optical properties of perovskite-type LaTiO2N synthesized using urea or thiourea as co-nitriding agents. Journal of the European Ceramic Society, 2015, 35, 3311-3317.	5.7	12
42	Ion-Exchange Properties of Strontium Hydroxyapatite under Acidic Conditions. Separation Science and Technology, 1998, 33, 1999-2007.	2.5	11
43	Preparative Enhancement of the Thermal Stability of Calcium Hydroxyapatites. Journal of Solid State Chemistry, 1999, 142, 319-324.	2.9	11
44	NMR study on the Li+ ion diffusion in LiCuO2 with layered structure. Solid State Ionics, 2005, 176, 837-840.	2.7	11
45	Preparation of carbon-supported Pt catalysts covered with microporous silica layers using organosilanes: Sintering resistance and superior catalytic performance for cyclohexane dehydrogenation. Applied Catalysis A: General, 2012, 419-420, 13-21.	4.3	11
46	Influence of Yttrium Dopant on the Structure and Electrical Conductivity of Potassium Sodium Niobate Thin Films. Materials Research, 2016, 19, 1417-1422.	1.3	11
47	Spectroscopic study on plate- and sponge-type Raney nickel electrodes for fuel cells. Journal of Materials Chemistry, 1995, 5, 737.	6.7	10
48	In2O3–ZnO transparent conductive oxide film deposition on polycarbonate substrates. Vacuum, 2008, 83, 557-560.	3.5	10
49	Li+ ionic diffusion in Li–Cu–O compounds. Solid State Ionics, 2006, 177, 2775-2778.	2.7	9
50	LUMINESCENT PROPERTIES OF (Y,Gd)3Al5O12:Ce PHOSPHORS PREPARED BY CITRIC-GEL METHOD. International Journal of Modern Physics B, 2006, 20, 4159-4164.	2.0	9
51	EXAFS and XPS Study of Rutile-Type Difluorides of First-Row Transition Metals. AIP Conference Proceedings, 2007, , .	0.4	9
52	Structural analysis of homologous series of Zn $<$ sub $>$ $<$ i $>$ k $<$ i $>$ $<$ sub $>$ In $<$ sub $>$ 2 $<$ sub $>$ O $<$ sub $>$ $<$ ii $>$ k $<$ i $>$ $<$ sub $>$ + $<$ sub $>$ 1nGaO $<$ sub $>$ $<$ ii $>$ k $<$ i $>$ $<$ sub $>$ + $<$ sub $>$ 1nGaO $<$ sub $>$ $<$ ii $>$ k $<$ i $>$ $<$ sub $>$ 0, sub $>$ + $<$ sub $>$ 1, sub $>$ 2, sub $>$ 3 $<$ 1, sub $>$ 3, sub $>$ 4, sub $>$ 4, sub $>$ 5, sub $>$ 6, sub $>$ 6, sub $>$ 8, sub $>$ 8, sub $>$ 9, su	2.3	9
53	A-Site and B-Site Non-stoichiometry and Sintering Characteristics of (Srlâ^'xLax)lâ^'yTilâ^'zO3 Perovskites. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	9
54	A facile two-step approach to synthesize monodisperse and high-magnetization Fe3O4@PS composite colloidal particles for constructing dual-response photonic crystals. Composites Communications, 2020, 19, 114-120.	6.3	9

#	Article	IF	CITATIONS
55	XAFS Study on Reduction Process of Pauli-Paramagnetic LaNiO3to Antiferromagnetic La2Ni2O5. Japanese Journal of Applied Physics, 1993, 32, 764.	1.5	8
56	Micro Enzyme-Sensor with an Osmium Complex and Porous Carbon for Measuring Galactose. Bulletin of the Chemical Society of Japan, 1995, 68, 1921-1927.	3.2	8
57	Crystallization process of transparent conductive oxides Znkln2Ok+3. Journal of Synchrotron Radiation, 2001, 8, 785-787.	2.4	8
58	Lithium ionic diffusion in lithium cobalt oxides prepared by mechanical milling. Solid State Ionics, 2008, 179, 1806-1809.	2.7	8
59	Influence of Ga2O3 addition on transparent conductive oxide films of In2O3–ZnO. Vacuum, 2008, 83, 561-563.	3.5	8
60	PREPARATION AND LUMINESCENCE PROPERTIES OF Eu2+-ACTIVATED Ba-Six-O-N PHOSPHORS. International Journal of Modern Physics B, 2010, 24, 3221-3225.	2.0	8
61	Stability and electrical conductivity of Nb- or Ta- doped SrTiO ₃ perovskites for interconnectors in solid oxide fuel cells. Journal of the Ceramic Society of Japan, 2017, 125, 223-226.	1.1	8
62	Effects of introduction of argon on structural and transparent conducting properties of ZnO–In2O3 thin films prepared by pulsed laser deposition. Thin Solid Films, 2005, 486, 53-57.	1.8	7
63	lonic diffusion and structural changes in lithium compounds. Solid State Ionics, 2009, 180, 621-625.	2.7	7
64	Photoluminescence Properties of (Ba _{1-(x+y)} Sr _x Eu _y) ₂ Phosphors for White LED Applications. Journal of Nano Research, 0, 36, 1-7.	t;S i&k ;sut	o>6
65	Field electron emission characteristics of plasma treated carbon nanotubes. Modern Physics Letters B, 2015, 29, 1540030.	1.9	7
66	Study of morphology and electrical properties of indium zinc oxide-modified kenaf fiber. Industrial Crops and Products, 2017, 100, 171-175.	5 . 2	7
67	Crystal Structure of Basic Calcium Carbonate and Its Decomposition Process in Water. Journal of the Ceramic Society of Japan, 1993, 101, 1335-1339.	1.3	6
68	Structural variation of thin films deposited from Zn3In2O6 target by RF-sputtering. Materials Research Bulletin, 2001, 36, 1075-1082.	5.2	6
69	Reduction processes of rare-earth nickelate perovskites LnNiO3 (Ln=La, Pr, Nd). Solid State Ionics, 2002, 154-155, 251-255.	2.7	6
70	Effects of Redox of Cu-Species in Copper-Strontium Hydroxyapatites on the Oxidative Dehydrogenation of Propane Journal of Chemical Engineering of Japan, 2003, 36, 210-215.	0.6	6
71	XAFS and XRD Studies of PdOCeO2 Catalysts on Al2O3. Physica Scripta, 2005, , 749.	2.5	6
72	Properties of Amorphous Transparent Conductive In-Ga-Zn Oxide Films Deposited on Fused Quartz by the PLD Method. E-Journal of Surface Science and Nanotechnology, 2009, 7, 273-276.	0.4	6

#	Article	IF	Citations
73	Effect of CeO2 Addition on the Change of Crystal Structure of PdO Supported on .CHIAl2O3 under the Methane Atmosphere. Journal of the Ceramic Society of Japan, 2004, 112, 149-152.	1.3	5
74	CATALYTIC ACTIVITY FOR METHANE OXIDATION OF GOETHITE SUPPORTED ON ALUMINA. International Journal of Modern Physics B, 2006, 20, 4249-4254.	2.0	5
75	The Rietveld analysis of crystal structure of an additive telluromolybdate CoTeMoO6. Journal of Molecular Catalysis A, 1999, 145, 301-307.	4.8	4
76	EFFECTS OF Al, Ga-DOPING ON TRANSPARENT CONDUCTING PROPERTIES OF AMORPHOUS ZnO-SnO2 FILMS. International Journal of Modern Physics B, 2006, 20, 3902-3907.	2.0	4
77	51V MAS NMR and XAFS Evidences for Redox of Magnesium Pyro- and Ortho-Vanadates on the Oxidative Dehydrogenation of Propane. Journal of the Ceramic Society of Japan, 2007, 115, 667-671.	1.1	4
78	Power law behaviors of electrical conductivities in lithium manganese oxides. Solid State Ionics, 2012, 225, 538-541.	2.7	4
79	X-ray Rietveld refinement of structure of Ba -deficient Ba ₃ N ₆ O ₁₂ N <sphosphor. 1540029.<="" 2015,="" 29,="" b,="" letters="" modern="" physics="" td=""><td>ub1x•2<td>o>∦xfont>Eu</td></td></sphosphor.>	ub1x•2 <td>o>∦xfont>Eu</td>	o> ∦ xfont>Eu
80	Photocatalytic activity of nanostructured tubular TiO 2 synthesized using kenaf fibers as a sacrificial template. Industrial Crops and Products, 2018, 113, 210-216.	5.2	4
81	Effect of thermoelectric material of Ca or Fe-doped LaCoO ₃ . International Journal of Modern Physics B, 2018, 32, 1840037.	2.0	4
82	Pyrolysis Mechanism of Basic Calcium Carbonate. Journal of the Ceramic Society of Japan, 1993, 101, 895-899.	1.3	3
83	Effect of Atmosphere on the Pyrolysis Process of Basic Calcium Carbonate. Journal of the Ceramic Society of Japan, 1995, 103, 240-244.	1.3	3
84	Effect of the phase transition of iron (III) oxide on the oxidative dehydrogenation of propane in the presence and absence of tetrachloromethane. Catalysis Communications, 2001, 2, 285-290.	3.3	3
85	Effects of Sulfate Ion on Crystal Structure and Activity for Methane Oxidation of Iron Oxide Prepared from Goethite Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 2002, 2002, 11-18.	0.1	3
86	Characterizations of Zinc Oxynitride Powders Prepared Under Ammonia Gas Flow. International Journal of Modern Physics B, 2003, 17, 1523-1526.	2.0	3
87	Electrochemical Synthesis of Conducting Polypyrrole Film on Tin Substrate: Structural, Chemical and Field Emission Investigations. Journal of Nano Research, 2015, 36, 44-50.	0.8	3
88	Effect of nanosecond and femtosecond pulse laser on the formation of WS ₂ nanostructures and field emission characteristics. Modern Physics Letters B, 2019, 33, 1940014.	1.9	3
89	Local structural changes in Ce1-xLnxO2-δ (LnÂ=ÂLa, Gd) solid electrolytes. Solid State Ionics, 2020, 347, 115213.	2.7	3
90	Ca2Si5N8:Eu2+ phosphors synthesized in graphite crucibles for enhanced reducing atmosphere. Modern Physics Letters B, 2020, 34, 2040023.	1.9	3

#	Article	IF	CITATIONS
91	Preparation and Superconductivity of the T-type (PrGd _{0.8} A _{0.2})CuO _{<i></i>} Compounds (A=Ca, Sr). Journal of the Ceramic Society of Japan, 1993, 101, 962-965.	1.3	2
92	Annealing Effects on Transparent Conducting Properties of Amorphous ZnO-In2O3 Films. International Journal of Modern Physics B, 2003, 17, 1188-1192.	2.0	2
93	A New Intermediate Phase in the Early Stage of Dehydration of Gibbsite. International Journal of Modern Physics B, 2003, 17, 1464-1469.	2.0	2
94	Low-temperature and rapid solid-state synthesis of YAG:Ce powders using oxides with narrow particle size distribution. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2713-2716.	0.8	2
95	THERMAL VIBRATION ANALYSIS OF RuO2 BY EXAFS. International Journal of Modern Physics B, 2006, 20, 4111-4116.	2.0	2
96	Optical properties of (La,Sr)TiO2N series depending on non-stoichiometries and particle sizes varying in accordance with heat treatment conditions. IOP Conference Series: Materials Science and Engineering, 2009, 1, 012018.	0.6	2
97	Deposition of IGZO or ITZO Thin Films by Co-Sputtering of IZO and GZO or ITO Targets. Advanced Materials Research, 0, 1110, 197-202.	0.3	2
98	Study of thermoelectric properties of Ca -doped LaCoO ₃ . Modern Physics Letters B, 2015, 29, 1540026.	1.9	2
99	Modification of grain boundary structure of SrTiO3 using hydroxyl additives. Ceramics International, 2018, 44, 3960-3965.	4.8	2
100	Production of boron nitride nanostructures using nanosecond laser ablation in acetone. International Journal of Modern Physics B, 2018, 32, 1840073.	2.0	2
101	Inhibition of secondary phase formation with orientation-controlled SrTiO3 nanoparticles. Ceramics International, 2019, 45, 9197-9202.	4.8	2
102	Layered Titanate Nanosheets Prepared by a Surfactant-Templating Approach: Effects of Lamellar Mesostructure on Surface Functionality. Science of Advanced Materials, 2014, 6, 1535-1541.	0.7	2
103	Enhanced quantum efficiency of a self-organized silica mixed red phosphor CaAlSiN3:Eu. Journal of Solid State Chemistry, 2022, 309, 122968.	2.9	2
104	Surface Analysis of Porous Carbon Microelectrodes with an Adsorbed Osmium Complex as a Mediator Analytical Sciences, 1997, 13, 303-305.	1.6	1
105	Transparent Conducting Oxides in the System of ZnO-In2O3 Nihon Kessho Gakkaishi, 2001, 43, 306-314.	0.0	1
106	Phonon Echo Study on Lithium Ionic Diffusion in LiNbO3Powder. Japanese Journal of Applied Physics, 2005, 44, 4043-4046.	1.5	1
107	TOTAL OXIDATION OF ACTIVATED CARBON OVER PdO-CeO2/TiO2-Al2O3 CATALYST. International Journal of Modern Physics B, 2006, 20, 3920-3925.	2.0	1
108	A-SITE DEFICIENCY AND STRUCTURAL AND ELECTRICAL CHARACTERISTICS OF (Sr1-xRex)1-yTiO3 PEROVSKITES (RE=La, Nd and Sm). International Journal of Modern Physics Conference Series, 2012, 06, 85-90.	0.7	1

7

#	Article	IF	CITATIONS
109	HOMOGENIZATION OF PARTICLE SIZES IN LaTiO2N OXYNITRIDE PIGMENTS BY BEAD-MILLING TECHNIQUE. International Journal of Modern Physics Conference Series, 2012, 06, 215-220.	0.7	1
110	SINTERING AND ELECTRICAL PROPERTIES IN AIR FOR A-SITE DEFICIENT (Sr0.7La0.3)1-yTiO3 PEROVSKITE SAMPLES WITH AND WITHOUT TiO2 PHASE. International Journal of Modern Physics Conference Series, 2012, 06, 1-6.	0.7	1
111	Tuning of Optical Properties in La _{1-x} Ba _x TaON ₂ Oxynitride through Composition and Particle Size Controls. Journal of Nano Research, 2013, 24, 213-219.	0.8	1
112	Milling effect on the local structure, site occupation, and site migration in aluminum substituted lithium manganese oxides. Solid State Ionics, 2018, 317, 214-220.	2.7	1
113	Influence of hygrothermal conditioning on the properties of compressed kenaf fiber / epoxy reinforced aluminium laminates. Journal of Mechanical Engineering and Sciences, 2020, 14, 7405-7415.	0.6	1
114	XAFS Study on the Pyrochlore-Type Bi2â^'XNdXRu2O7Solid-Solutions. Chemistry Letters, 1994, 23, 2021-2022.	1.3	0
115	Phase Equilibria and Properties of Transparent Conductors in the Indium-Tin-Zinc Oxide System. Materials Research Society Symposia Proceedings, 1997, 471, 93.	0.1	0
116	Effects of Charge/Discharge of Li1-xNi1-yMnyO2 on Their Crystal Structures and Electronic States. Zairyo/Journal of the Society of Materials Science, Japan, 2000, 49, 221-226.	0.2	0
117	Structural Property and Activity for Methane Oxidation of Iron Oxides Prepared by NaOH and FeSO4 Solution. International Journal of Modern Physics B, 2003, 17, 1498-1502.	2.0	0
118	Effect of Texture and Composition of Microorganisms Carrier for Disposal of Wastewater. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 282-286.	0.2	0
119	Zinc Oxynitride Powders Examined by Xray Absorption Near Edge Spectroscopy. Physica Scripta, 2005, , 312.	2.5	0
120	A new synthesis route of perovskite-related Sr2TaO3N oxynitride via Sr2Ta6O10.188. AIP Conference Proceedings, 2016, , .	0.4	0
121	Field effect transistor behavior of Bi2Se3 nanostructure prepared by laser ablation. Modern Physics Letters B, 2019, 33, 1940015.	1.9	0
122	Fabrication and evaluation of CA-doped SrTiO3 thermoelectric materials by molten salt method. International Journal of Modern Physics B, 2021, 35, 2140040.	2.0	0
123	Performance of Calcium Silicate Hydrate Briquettes Produced from Fly Ash and Slaked Lime in Disposal of Wastewater. Zairyo/Journal of the Society of Materials Science, Japan, 2002, 51, 68-73.	0.2	0
124	EFFECTIVENESS OF CALCIUM SILICATE HYDRATE BRIQUETTE PRODUCED FROM FLY ASH AS A MICROORGANISM CARRIER. Zairyo/Journal of the Society of Materials Science, Japan, 1997, 46, 81-87.	0.2	0
125	The effect of Ga-content and target current on transparent conducting InGaSnO thin film by the DC sputtering on different substrates. , 2020, , .		0