Aijun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1069994/publications.pdf

Version: 2024-02-01

623734 677142 46 568 14 22 citations h-index g-index papers 46 46 46 420 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	CRC Code Design for List Decoding of Polar Codes. IEEE Communications Letters, 2017, 21, 1229-1232.	4.1	61
2	The Performance Analysis of Downlink NOMA in LEO Satellite Communication System. IEEE Access, 2020, 8, 93723-93732.	4.2	42
3	Dynamic Anti-Jamming Coalition for Satellite-Enabled Army IoT: A Distributed Game Approach. IEEE Internet of Things Journal, 2020, 7, 10932-10944.	8.7	34
4	Deep Learning-Based Channel Prediction for LEO Satellite Massive MIMO Communication System. IEEE Wireless Communications Letters, 2021, 10, 1835-1839.	5.0	31
5	Sum Rate Maximization of Massive MIMO NOMA in LEO Satellite Communication System. IEEE Wireless Communications Letters, 2021, 10, 1667-1671.	5.0	30
6	Practical Design and Decoding of Parallel Concatenated Structure for Systematic Polar Codes. IEEE Transactions on Communications, 2016, 64, 456-466.	7.8	27
7	A Faster-Than-Nyquist (FTN)-Based Multicarrier System. IEEE Transactions on Vehicular Technology, 2019, 68, 947-951.	6.3	26
8	A Prediction-Based Resource Matching Scheme for Rentable LEO Satellite Communication Network. IEEE Communications Letters, 2020, 24, 414-417.	4.1	24
9	Max Completion Time Optimization for Internet of Things in LEO Satellite-Terrestrial Integrated Networks. IEEE Internet of Things Journal, 2021, 8, 9981-9994.	8.7	24
10	A Practical Construction Method for Polar Codes. IEEE Communications Letters, 2014, 18, 1871-1874.	4.1	21
11	MMSE Turbo Equalization and Detection for Multicarrier Faster-Than-Nyquist Signaling. IEEE Transactions on Vehicular Technology, 2018, 67, 2267-2275.	6.3	20
12	Spectral Efficiency Maximization for Deliberate Clipping-Based Multicarrier Faster-Than-Nyquist Signaling. IEEE Access, 2018, 6, 13617-13623.	4.2	17
13	Analysis and Adaptive Design of Polar Coded HARQ Transmission Under SC-List Decoding. IEEE Wireless Communications Letters, 2017, 6, 798-801.	5.0	16
14	PAPR Reduction of Multicarrier Faster-Than-Nyquist Signals With Partial Transmit Sequence. IEEE Access, 2017, 5, 24931-24937.	4.2	15
15	Peak-to-Average Power Ratio of Multicarrier Faster-Than-Nyquist Signals: Distribution, Optimization and Reduction. IEEE Access, 2018, 6, 11977-11987.	4.2	14
16	An Enhanced Probabilistic Computation Method for the Weight Distribution of Polar Codes. IEEE Communications Letters, 2017, 21, 2562-2565.	4.1	13
17	Hexagonal Multicarrier Faster-Than-Nyquist Signaling. IEEE Access, 2017, 5, 3332-3339.	4.2	12
18	On Max-SIR Time-Frequency Packing for Multicarrier Faster-than-Nyquist Signaling. IEEE Communications Letters, 2017, , 1-1.	4.1	12

#	Article	IF	Citations
19	Learning the Structured Sparsity: 3-D Massive MIMO Channel Estimation and Adaptive Spatial Interpolation. IEEE Transactions on Vehicular Technology, 2019, 68, 10663-10678.	6.3	11
20	Construction and Optimization for Adaptive Polar Coded Cooperation. IEEE Wireless Communications Letters, 2020, 9, 1187-1190.	5.0	9
21	Satellite-Assisted UAV Trajectory Control in Hostile Jamming Environments. IEEE Transactions on Vehicular Technology, 2022, 71, 3760-3775.	6.3	9
22	CRC Location Design for Polar Codes. IEEE Communications Letters, 2018, 22, 2202-2205.	4.1	8
23	Iterative-Detection-Aided Tomlinson-Harashima Precoding for Faster-Than-Nyquist Signaling. IEEE Access, 2020, 8, 7748-7757.	4.2	8
24	A Network-Flows-Based Satellite Handover Strategy for LEO Satellite Networks. IEEE Wireless Communications Letters, 2021, 10, 2669-2673.	5.0	8
25	Distributed UAV Deployment in Hostile Environment: A Game-Theoretic Approach. IEEE Wireless Communications Letters, 2022, 11, 126-130.	5.0	8
26	Deep Learning (DL)-Based Channel Prediction and Hybrid Beamforming for LEO Satellite Massive MIMO System. IEEE Internet of Things Journal, 2022, 9, 23705-23715.	8.7	8
27	Location-assisted precoding for three-dimension massive MIMO in air-to-ground transmission. , 2017, , .		7
28	Distributed Resource Management Framework for IoS Against Malicious Jamming. IEEE Transactions on Communications, 2021, 69, 8271-8286.	7.8	7
29	Files Delivery and Share Optimization in LEO Satellite-Terrestrial Integrated Networks: A NOMA Based Coalition Formation Game Approach. IEEE Transactions on Vehicular Technology, 2022, 71, 831-843.	6.3	7
30	Efficient Design of Multi-Packet Hybrid ARQ Transmission Scheme Based on Polar Codes. IEEE Access, 2018, 6, 31564-31570.	4.2	6
31	FMAC: A Self-Adaptive MAC Protocol for Flocking of Flying Ad Hoc Network. IEEE Internet of Things Journal, 2021, 8, 610-625.	8.7	5
32	An Efficient Implementation of Lattice Staggered Multicarrier Faster-Than-Nyquist Signaling. IEEE Communications Letters, 2018, 22, 240-243.	4.1	4
33	CRC-Aided Parity-Check Polar Coding. IEEE Access, 2019, 7, 155574-155583.	4.2	4
34	On the practical benefit of hexagonal multicarrier faster-than-Nyquist signaling. , 2017, , .		3
35	Design of systematic polar coded selective-IR hybrid ARQ transmission for IoT., 2017,,.		3
36	Low-Complexity Selective Mapping Methods for Multicarrier Faster-Than-Nyquist Signaling. IEEE Access, 2020, 8, 31420-31431.	4.2	2

#	Article	IF	CITATIONS
37	Design and analysis of polar coded cooperation with incremental redundancy for IoT in fading channels. IET Communications, 2021, 15, 595-602.	2.2	2
38	High-Gain Circularly Polarized Array Antenna With Low Grating Lobe Property Based on TM30/TM03 Mode. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 401-405.	4.0	2
39	A Satellite Handover Strategy Based on Heuristic Algorithm for LEO Satellite Networks. IEICE Transactions on Communications, 2022, E105.B, 876-884.	0.7	2
40	Low-Complexity CFO Estimator for Spectrally Efficient Frequency Division Multiplexing System. IEEE Transactions on Vehicular Technology, 2022, 71, 6762-6766.	6.3	2
41	MacWilliams Identities for Probabilistic Weight Distribution of Polar Codes., 2019,,.		1
42	Corrections to "Efficient Design of Multi-Packet Hybrid ARQ Transmission Scheme Based on Polar Code― IEEE Access, 2020, 8, 135296-135297.	4.2	1
43	Iterative optimization THP for Multiple Multi-beam Satellites High-Throughput Communication System. , 2021, , .		1
44	Data Transmission Time Minimization for LEO Satellite-Terrestrial Integrated Networks. , 2020, , .		1
45	Rateless Coding Schemes Using Polar Codes: Truly "No―Rates?. IEEE Access, 2020, 8, 2428-2440.	4.2	0
46	Partitioned Adaptive Successive-Cancellation List Decoder for Polar Codes. , 2020, , .		0