Jeffrey Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10699044/publications.pdf

Version: 2024-02-01

26	1,026	17 h-index	26
papers	citations		g-index
26	26	26	1712
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: Influence of Ni content. Applied Catalysis B: Environmental, 2011, 108-109, 6-13.	20.2	168
2	Homogeneous, Heterogeneous, and Biological Catalysts for Electrochemical N ₂ Reduction toward NH ₃ under Ambient Conditions. ACS Catalysis, 2019, 9, 5245-5267.	11.2	145
3	A novel calcium looping absorbent incorporated with polymorphic spacers for hydrogen production and CO ₂ capture. Energy and Environmental Science, 2014, 7, 3291-3295.	30.8	108
4	Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts. Fuel, 2017, 188, 610-620.	6.4	83
5	A Green and Facile Synthesis of Ordered Mesoporous Nanosilica Using Coal Fly Ash. ACS Sustainable Chemistry and Engineering, 2016, 4, 4654-4661.	6.7	75
6	Oneâ€Step Roomâ€Temperature Synthesis of [Al]MCMâ€41 Materials for the Catalytic Conversion of Phenylglyoxal to Ethylmandelate. ChemCatChem, 2013, 5, 3889-3896.	3.7	35
7	Cyclic Performance of Waste-Derived SiO ₂ Stabilized, CaO-Based Sorbents for Fast CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2016, 4, 7004-7012.	6.7	35
8	Acidity enhanced [Al]MCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to É>-caprolactam. Journal of Catalysis, 2018, 358, 71-79.	6.2	35
9	Modulatory effect of simultaneously released magnesium, strontium, and silicon ions on injectable silk hydrogels for bone regeneration. Materials Science and Engineering C, 2019, 94, 976-987.	7.3	33
10	Development of Fe-Promoted Ni–Al Catalysts for Hydrogen Production from Gasification of Wood Sawdust. Energy & Sawdus	5.1	31
11	Thermal-crosslinked porous chitosan scaffolds for soft tissue engineering applications. Materials Science and Engineering C, 2013, 33, 3780-3785.	7.3	30
12	Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone. Catalysis Science and Technology, 2015, 5, 2788-2797.	4.1	30
13	Strontium-doped calcium silicate bioceramic with enhanced <i>in vitro</i> osteogenic properties. Biomedical Materials (Bristol), 2017, 12, 035003.	3.3	27
14	Novel injectable strontium-hardystonite phosphate cement for cancellous bone filling applications. Materials Science and Engineering C, 2019, 97, 103-115.	7.3	26
15	A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration. Biomedical Materials (Bristol), 2016, 11, 035018.	3. 3	25
16	Tuning the Synthesis of Manganese OxidesÂNanoparticles for Efficient Oxidation of Benzyl Alcohol. Nanoscale Research Letters, 2017, 12, 23.	5.7	24
17	Nanocomposites of layered clays and cadmium sulfide: Similarities and differences in formation, structure and properties. Microporous and Mesoporous Materials, 2008, 108, 168-182.	4.4	18
18	Sterilization-free chitosan hydrogels for controlled drug release. Materials Letters, 2012, 72, 110-112.	2.6	18

#	Article	IF	CITATION
19	Removal of thorium(IV) from aqueous solution using magnetic ion-imprinted chitosan resin. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 1265-1272.	1.5	18
20	Fabrication of a novel triphasic and bioactive ceramic and evaluation of its in vitro and in vivo cytocompatibility and osteogenesis. Journal of Materials Chemistry B, 2014, 2, 1866.	5.8	15
21	Identification of Vicinal Silanols and Promotion of Their Formation on MCM-41 via Ultrasonic Assisted One-Step Room-Temperature Synthesis for Beckmann Rearrangement. Industrial & Engineering Chemistry Research, 2018, 57, 5550-5557.	3.7	14
22	Well-dispersed cadmium sulfide prepared in the presence of laponite by microwave irradiation. Solid State Sciences, 2008, 10, 563-568.	3.2	11
23	A straightforward wet-chemical route to the nanocomposites of general layered clays and metal sulfides. Materials Letters, 2006, 60, 2309-2311.	2.6	8
24	Transection and explantation of intraocular lenses using femtosecond lasers. Journal of Cataract and Refractive Surgery, 2017, 43, 420-423.	1.5	6
25	Recycling of coal seam gas-associated water using vacuum membrane distillation. Water Science and Technology, 2015, 72, 908-916.	2.5	4
26	Intraocular Lens Fragmentation Using Femtosecond Laser: An In Vitro Study. Translational Vision Science and Technology, 2015, 4, 8.	2.2	4