Zunjie Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1069843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Annealing on Mechanical Properties of Al-20Si Processed by Selective Laser Melting. Metals, 2014, 4, 28-36.	2.3	144
2	Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy. Materials & Design, 2011, 32, 1617-1622.	5.1	112
3	Microstructure evolution and modification mechanism of the ytterbium modified Al–7.5%Si–0.45%Mg alloys. Journal of Alloys and Compounds, 2011, 509, 3387-3392.	5.5	61
4	The thermal expansion behaviour of SiCp/Al–20Si composites solidified under high pressures. Materials & Design, 2015, 65, 387-394.	5.1	60
5	Surface microstructure and cell compatibility of calcium silicate and calcium phosphate composite coatings on Mg–Zn–Mn–Ca alloys for biomedical application. Colloids and Surfaces B: Biointerfaces, 2011, 83, 96-102.	5.0	47
6	The effect of grain refinement and precipitation strengthening induced by Sc or Er alloying on the mechanical properties of cast Al-Li-Cu-Mg alloys at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141641.	5.6	35
7	Microstructure evolution of Al–Mg alloy during solidification under high pressure. Materials Letters, 2010, 64, 869-871.	2.6	33
8	Evolution of the microstructure and nanohardness of Ti–48at.%Al alloy solidified under high pressure. Materials & Design, 2012, 34, 488-493.	5.1	32
9	Microstructure and compression behavior of in-situ synthesized Ti2AlC reinforced Ti-48Al-2Cr alloy with carbon nanotubes addition. Journal of Alloys and Compounds, 2021, 862, 158646.	5.5	31
10	The effects of Nb content on microstructure and fracture behavior of near α titanium alloys. Materials & Design, 2015, 66, 267-273.	5.1	29
11	Microstructural evolution and mechanical strengthening mechanism of the high pressure heat treatment (HPHT) on Al-Mg alloy. Journal of Alloys and Compounds, 2017, 692, 629-633.	5.5	20
12	Crystal structure and mechanical properties of a new ternary phase in Mg-Zn-Y alloy solidified under high pressure. Journal of Alloys and Compounds, 2017, 717, 214-218.	5.5	19
13	Microstructural evolution and mechanical properties of Al–Si–Cu–(Ge)–(Mg) alloy solidified under high pressure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142065.	5.6	15
14	Microstructure evolution and precipitation of SiC particle reinforced Al–20Si composite solidified under high pressures. Materials Letters, 2012, 79, 232-234.	2.6	13
15	In situ formation of SiC in Al–40Si alloy during high-pressure solidification. Ceramics International, 2021, 47, 24485-24493.	4.8	12
16	The formation mechanism and biocorrosion property of CaSiO ₃ /CaHPO ₄ · 2H ₂ O composite conversion coating on the extruded Mgâ€Znâ€Ca alloy for bone implant application·. Surface and Interface Analysis, 2011, 43, 791-794.	1.8	9
17	The evolution of microstructure and mechanical properties at elevated temperature of cast Al–Lı–Cu–Mg alloys with Ni addition. Journal of Materials Research and Technology, 2020, 9, 11069-11079.	5.8	9
18	Effects of Cooling Rate on the Solidification and Microstructure of Nickel-Based Superalloy GTD222. Materials, 2019, 12, 1920.	2.9	8

ZUNJIE WEI

#	Article	IF	CITATIONS
19	The effect of pressure-induced Mg64Zn15Y21 phase on the mechanical properties of Mg–Zn–Y alloy. Journal of Alloys and Compounds, 2020, 840, 155682.	5.5	8
20	Microstructures and mechanical properties of as-cast TiAl alloys with higher C additions. Journal of Materials Science, 2002, 37, 1809-1812.	3.7	7
21	Valence electronic structure of tantalum carbide and nitride. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50, 737-741.	0.2	6
22	Cooperative effect of Mg and Si contents on the microstructural evolution, mechanical performance, and deformation behavior of cast Al–Li–Mg–Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 841, 142976.	5.6	6
23	Modeling of yield strength in binary hypoeutectic alloy under high pressure solidification. Journal of Alloys and Compounds, 2016, 686, 727-732.	5.5	4
24	Effect of High Pressure and Temperature on the Evolution of Si Phase and Eutectic Spacing in Al-20Si Alloys. Crystals, 2021, 11, 705.	2.2	4
25	Enhanced tensile properties in a high-pressure synthesized Al–Si–Cu-Ge-Mg alloy with nano-sized Al particles in eutectic Si. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142850.	5.6	3
26	The Microstructure Evolution and Mass Transfer in Mushy Zone during High-Pressure Solidifying Hypoeutectic Al-Ni Alloy. Applied Sciences (Switzerland), 2020, 10, 7206.	2.5	2
27	Microstructure and Nanohardness of Ti-48Al-2Cr Alloy Solidified under High Pressure. Applied Sciences (Switzerland), 2020, 10, 5394.	2.5	1
28	Microstructure Evolution of Mg-Sn-Y Alloy Solidified under High Pressure and Temperature Gradient. Crystals, 2022, 12, 149.	2.2	1