Geoffrey Ye Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10698370/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Overview of Massive MIMO: Benefits and Challenges. IEEE Journal on Selected Topics in Signal Processing, 2014, 8, 742-758.	7.3	2,080
2	Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wireless Communications Letters, 2018, 7, 114-117.	3.2	1,230
3	Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 2011, 49, 30-37.	4.9	1,068
4	Cognitive radio networking and communications: an overview. IEEE Transactions on Vehicular Technology, 2011, 60, 3386-3407.	3.9	877
5	Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 2021, 64, 1.	2.7	858
6	Device-to-Device Communications Underlaying Cellular Networks. IEEE Transactions on Communications, 2013, 61, 3541-3551.	4.9	809
7	OFDM and Its Wireless Applications: A Survey. IEEE Transactions on Vehicular Technology, 2009, 58, 1673-1694.	3.9	738
8	Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications, 2010, 58, 545-554.	4.9	604
9	Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Transactions on Vehicular Technology, 2019, 68, 3163-3173.	3.9	486
10	Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems. IEEE Wireless Communications Letters, 2018, 7, 852-855.	3.2	474
11	An Overview of Sustainable Green 5G Networks. IEEE Wireless Communications, 2017, 24, 72-80.	6.6	427
12	Deep Learning in Physical Layer Communications. IEEE Wireless Communications, 2019, 26, 93-99.	6.6	399
13	Energy- and Spectral-Efficiency Tradeoff in Downlink OFDMA Networks. IEEE Transactions on Wireless Communications, 2011, 10, 3874-3886.	6.1	395
14	Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 990-1002.	4.9	389
15	Modulation and Multiple Access for 5G Networks. IEEE Communications Surveys and Tutorials, 2018, 20, 629-646.	24.8	348
16	Spatial- and Frequency-Wideband Effects in Millimeter-Wave Massive MIMO Systems. IEEE Transactions on Signal Processing, 2018, 66, 3393-3406.	3.2	327
17	Deep Learning Enabled Semantic Communication Systems. IEEE Transactions on Signal Processing, 2021, 69, 2663-2675.	3.2	296
18	Distributed Interference-Aware Energy-Efficient Power Optimization. IEEE Transactions on Wireless Communications, 2011, 10, 1323-1333.	6.1	283

#	Article	IF	CITATIONS
19	Spectrum Sharing in Vehicular Networks Based on Multi-Agent Reinforcement Learning. IEEE Journal on Selected Areas in Communications, 2019, 37, 2282-2292.	9.7	282
20	Resource Allocation for D2D-Enabled Vehicular Communications. IEEE Transactions on Communications, 2017, 65, 3186-3197.	4.9	278
21	Model-Driven Deep Learning for Physical Layer Communications. IEEE Wireless Communications, 2019, 26, 77-83.	6.6	271
22	Joint Mode Selection and Resource Allocation for Device-to-Device Communications. IEEE Transactions on Communications, 2014, 62, 3814-3824.	4.9	258
23	Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks. IEEE Communications Surveys and Tutorials, 2017, 19, 33-56.	24.8	245
24	Channel Estimation for OFDM. IEEE Communications Surveys and Tutorials, 2014, 16, 1891-1908.	24.8	234
25	Deep Learning-Based CSI Feedback Approach for Time-Varying Massive MIMO Channels. IEEE Wireless Communications Letters, 2019, 8, 416-419.	3.2	227
26	Machine Learning for Vehicular Networks: Recent Advances and Application Examples. IEEE Vehicular Technology Magazine, 2018, 13, 94-101.	2.8	223
27	Deep CNN-Based Channel Estimation for mmWave Massive MIMO Systems. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 989-1000.	7.3	215
28	Energy-Efficient Resource Allocation in OFDMA Networks. IEEE Transactions on Communications, 2012, 60, 3767-3778.	4.9	214
29	Vehicular Communications: A Network Layer Perspective. IEEE Transactions on Vehicular Technology, 2019, 68, 1064-1078.	3.9	204
30	Model-Driven Deep Learning for MIMO Detection. IEEE Transactions on Signal Processing, 2020, 68, 1702-1715.	3.2	204
31	Deep Learning-Based End-to-End Wireless Communication Systems With Conditional GANs as Unknown Channels. IEEE Transactions on Wireless Communications, 2020, 19, 3133-3143.	6.1	203
32	UAV Communications Based on Non-Orthogonal Multiple Access. IEEE Wireless Communications, 2019, 26, 52-57.	6.6	198
33	Vehicular Communications: A Physical Layer Perspective. IEEE Transactions on Vehicular Technology, 2017, 66, 10647-10659.	3.9	188
34	Toward Intelligent Vehicular Networks: A Machine Learning Framework. IEEE Internet of Things Journal, 2019, 6, 124-135.	5.5	181
35	A Model-Driven Deep Learning Network for MIMO Detection. , 2018, , .		179
36	ComNet: Combination of Deep Learning and Expert Knowledge in OFDM Receivers. IEEE Communications Letters, 2018, 22, 2627-2630.	2.5	177

#	Article	IF	CITATIONS
37	Sparse Representation for Wireless Communications: A Compressive Sensing Approach. IEEE Signal Processing Magazine, 2018, 35, 40-58.	4.6	169
38	Energy- and Spectral-Efficiency Tradeoff for Distributed Antenna Systems with Proportional Fairness. IEEE Journal on Selected Areas in Communications, 2013, 31, 894-902.	9.7	166
39	Deep-Learning-Based Wireless Resource Allocation With Application to Vehicular Networks. Proceedings of the IEEE, 2020, 108, 341-356.	16.4	164
40	Convolutional Neural Network-Based Multiple-Rate Compressive Sensing for Massive MIMO CSI Feedback: Design, Simulation, and Analysis. IEEE Transactions on Wireless Communications, 2020, 19, 2827-2840.	6.1	163
41	Channel Agnostic End-to-End Learning Based Communication Systems with Conditional GAN. , 2018, , .		155
42	Low-Complexity Energy-Efficient Scheduling for Uplink OFDMA. IEEE Transactions on Communications, 2012, 60, 112-120.	4.9	144
43	Multi-Objective Energy-Efficient Resource Allocation for Multi-RAT Heterogeneous Networks. IEEE Journal on Selected Areas in Communications, 2015, 33, 2118-2127.	9.7	129
44	Spectrum and Power Allocation for Vehicular Communications With Delayed CSI Feedback. IEEE Wireless Communications Letters, 2017, 6, 458-461.	3.2	125
45	Deep Learning-Based Downlink Channel Prediction for FDD Massive MIMO System. IEEE Communications Letters, 2019, 23, 1994-1998.	2.5	122
46	Graph-Based Resource Sharing in Vehicular Communication. IEEE Transactions on Wireless Communications, 2018, 17, 4579-4592.	6.1	120
47	LBT-Based Adaptive Channel Access for LTE-U Systems. IEEE Transactions on Wireless Communications, 2016, 15, 6585-6597.	6.1	117
48	Spatial-Wideband Effect in Massive MIMO with Application in mmWave Systems. IEEE Communications Magazine, 2018, 56, 134-141.	4.9	112
49	Recent advances in energy-efficient networks and their application in 5G systems. IEEE Wireless Communications, 2015, 22, 145-151.	6.6	107
50	Mode Switching for Energy-Efficient Device-to-Device Communications in Cellular Networks. IEEE Transactions on Wireless Communications, 2015, 14, 6993-7003.	6.1	104
51	Energy-Efficient Resource Allocation in OFDM Systems With Distributed Antennas. IEEE Transactions on Vehicular Technology, 2014, 63, 1223-1231.	3.9	93
52	Beam Squint and Channel Estimation for Wideband mmWave Massive MIMO-OFDM Systems. IEEE Transactions on Signal Processing, 2019, 67, 5893-5908.	3.2	90
53	Energy-Efficient Configuration of Spatial and Frequency Resources in MIMO-OFDMA Systems. IEEE Transactions on Communications, 2013, 61, 564-575.	4.9	80
54	Energy-Efficient CoMP Precoding in Heterogeneous Networks. IEEE Transactions on Signal Processing, 2014, 62, 1005-1017.	3.2	75

#	Article	IF	CITATIONS
55	20 Years of Evolution From Cognitive to Intelligent Communications. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 6-20.	4.9	73
56	Deep Learning for Channel Estimation: Interpretation, Performance, and Comparison. IEEE Transactions on Wireless Communications, 2021, 20, 2398-2412.	6.1	73
57	Multiple Access for Mobile-UAV Enabled Networks: Joint Trajectory Design and Resource Allocation. IEEE Transactions on Communications, 2019, 67, 4980-4994.	4.9	71
58	Energy-Efficient Resource Allocation for OFDMA-Based Multi-RAT Networks. IEEE Transactions on Wireless Communications, 2014, 13, 2696-2705.	6.1	66
59	Deep Learning Based Channel Estimation for Massive MIMO With Mixed-Resolution ADCs. IEEE Communications Letters, 2019, 23, 1989-1993.	2.5	65
60	Energy-Efficient Design for Downlink OFDMA with Delay-Sensitive Traffic. IEEE Transactions on Wireless Communications, 2013, 12, 3085-3095.	6.1	64
61	Joint Downlink and Uplink Resource Allocation for Energy-Efficient Carrier Aggregation. IEEE Transactions on Wireless Communications, 2015, 14, 3207-3218.	6.1	62
62	Robust Beamforming With Partial Channel State Information for Energy Efficient Networks. IEEE Journal on Selected Areas in Communications, 2015, 33, 2920-2935.	9.7	62
63	Energy-Efficient Spectrum Access in Cognitive Radios. IEEE Journal on Selected Areas in Communications, 2014, 32, 550-562.	9.7	61
64	Single-Site Localization Based on a New Type of Fingerprint for Massive MIMO-OFDM Systems. IEEE Transactions on Vehicular Technology, 2018, 67, 6134-6145.	3.9	60
65	Wideband Beamforming for Hybrid Massive MIMO Terahertz Communications. IEEE Journal on Selected Areas in Communications, 2021, 39, 1725-1740.	9.7	60
66	Joint User Association and Spectrum Allocation for Small Cell Networks With Wireless Backhauls. IEEE Wireless Communications Letters, 2016, 5, 496-499.	3.2	57
67	Deep Neural Networks for Linear Sum Assignment Problems. IEEE Wireless Communications Letters, 2018, 7, 962-965.	3.2	57
68	Task-Oriented Multi-User Semantic Communications for VQA. IEEE Wireless Communications Letters, 2022, 11, 553-557.	3.2	55
69	Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems. IEEE Communications Letters, 2020, 24, 1742-1746.	2.5	54
70	Graph Embedding-Based Wireless Link Scheduling With Few Training Samples. IEEE Transactions on Wireless Communications, 2021, 20, 2282-2294.	6.1	54
71	Resource Allocation for Vehicular Communications With Low Latency and High Reliability. IEEE Transactions on Wireless Communications, 2019, 18, 3887-3902.	6.1	53
72	Two-Step Codeword Design for Millimeter Wave Massive MIMO Systems With Quantized Phase Shifters. IEEE Transactions on Signal Processing, 2020, 68, 170-180.	3.2	52

#	Article	IF	CITATIONS
73	Energy-Efficient Mobile Association in Heterogeneous Networks With Device-to-Device Communications. IEEE Transactions on Wireless Communications, 2016, 15, 5260-5271.	6.1	51
74	Fingerprint-Based Localization for Massive MIMO-OFDM System With Deep Convolutional Neural Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 10846-10857.	3.9	48
75	Beam Training and Allocation for Multiuser Millimeter Wave Massive MIMO Systems. IEEE Transactions on Wireless Communications, 2019, 18, 1041-1053.	6.1	48
76	QoS-Aware Resource Allocation for Device-to-Device Communications With Channel Uncertainty. IEEE Transactions on Vehicular Technology, 2016, 65, 6051-6062.	3.9	47
77	Energy-Efficient User Association and Resource Allocation for Multistream Carrier Aggregation. IEEE Transactions on Vehicular Technology, 2016, 65, 6366-6376.	3.9	46
78	A Model-Driven Deep Learning Method for Massive MIMO Detection. IEEE Communications Letters, 2020, 24, 1724-1728.	2.5	46
79	Probabilistic Resource Allocation for Opportunistic Spectrum Access. IEEE Transactions on Wireless Communications, 2010, 9, 2870-2879.	6.1	45
80	D2D-Enabled Mobile User Edge Caching: A Multi-Winner Auction Approach. IEEE Transactions on Vehicular Technology, 2019, 68, 12314-12328.	3.9	45
81	Hierarchical Codebook-Based Multiuser Beam Training for Millimeter Wave Massive MIMO. IEEE Transactions on Wireless Communications, 2020, 19, 8142-8152.	6.1	43
82	Proactive detection of spectrum opportunities in primary systems with power control. IEEE Transactions on Wireless Communications, 2009, 8, 4815-4823.	6.1	41
83	Power Allocation Criteria for Distributed Antenna Systems. IEEE Transactions on Vehicular Technology, 2015, 64, 5083-5090.	3.9	41
84	Energy- and Spectral-Efficiency Tradeoff in Downlink OFDMA Networks. , 2011, , .		40
85	Compression and Acceleration of Neural Networks for Communications. IEEE Wireless Communications, 2020, 27, 110-117.	6.6	40
86	Learning to Branch: Accelerating Resource Allocation in Wireless Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 958-970.	3.9	39
87	A Framework on Hybrid MIMO Transceiver Design Based on Matrix-Monotonic Optimization. IEEE Transactions on Signal Processing, 2019, 67, 3531-3546.	3.2	37
88	Federated Learning and Wireless Communications. IEEE Wireless Communications, 2021, 28, 134-140.	6.6	37
89	Machine Learning Prediction Based CSI Acquisition for FDD Massive MIMO Downlink. , 2018, , .		36
90	Energy Efficient V2X-Enabled Communications in Cellular Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 554-564.	3.9	35

#	Article	IF	CITATIONS
91	Dual CNN-Based Channel Estimation for MIMO-OFDM Systems. IEEE Transactions on Communications, 2021, 69, 5859-5872.	4.9	35
92	Resource Allocation for High-Reliability Low-Latency Vehicular Communications With Packet Retransmission. IEEE Transactions on Vehicular Technology, 2019, 68, 6219-6230.	3.9	32
93	Deep CNN for Wideband Mmwave Massive Mimo Channel Estimation Using Frequency Correlation. , 2019, , .		32
94	Learn to Compress CSI and Allocate Resources in Vehicular Networks. IEEE Transactions on Communications, 2020, 68, 3640-3653.	4.9	32
95	Joint User Association and Resource Allocation for Multi-Band Millimeter-Wave Heterogeneous Networks. IEEE Transactions on Communications, 2019, 67, 8502-8516.	4.9	30
96	Energy-Efficient Small Cell With Spectrum-Power Trading. IEEE Journal on Selected Areas in Communications, 2016, 34, 3394-3408.	9.7	29
97	First 20 Years of Green Radios. IEEE Transactions on Green Communications and Networking, 2020, 4, 1-15.	3.5	29
98	Acquisition of channel state information for mmWave massive MIMO: traditional and machine learning-based approaches. Science China Information Sciences, 2021, 64, 1.	2.7	29
99	An Attention-Aided Deep Learning Framework for Massive MIMO Channel Estimation. IEEE Transactions on Wireless Communications, 2022, 21, 1823-1835.	6.1	28
100	Deep Multi-Stage CSI Acquisition for Reconfigurable Intelligent Surface Aided MIMO Systems. IEEE Communications Letters, 2021, 25, 2024-2028.	2.5	27
101	AnciNet: An Efficient Deep Learning Approach for Feedback Compression of Estimated CSI in Massive MIMO Systems. IEEE Wireless Communications Letters, 2020, 9, 2192-2196.	3.2	26
102	Energy-Efficient Power Allocation for Pilots in Training-Based Downlink OFDMA Systems. IEEE Transactions on Communications, 2012, 60, 3047-3058.	4.9	25
103	Adaptive LBT for Licensed Assisted Access LTE Networks. , 2015, , .		24
104	Deep Learning for Beam Training in Millimeter Wave Massive MIMO Systems. IEEE Transactions on Wireless Communications, 2024, , 1-1.	6.1	24
105	Semantic Communications for Speech Signals. , 2021, , .		24
106	Energy efficiency tradeoff in downlink and uplink TDD OFDMA with simultaneous wireless information and power transfer. , 2014, , .		23
107	Performance Analysis of Clustered LoRa Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 7616-7629.	3.9	22
108	Deep Learning-Based Robust Precoding for Massive MIMO. IEEE Transactions on Communications, 2021, 69, 7429-7443.	4.9	22

#	Article	IF	CITATIONS
109	Al-Aided Online Adaptive OFDM Receiver: Design and Experimental Results. IEEE Transactions on Wireless Communications, 2021, 20, 7655-7668.	6.1	22
110	Deep Learning-Based Implicit CSI Feedback in Massive MIMO. IEEE Transactions on Communications, 2022, 70, 935-950.	4.9	21
111	Circular Convolutional Auto-Encoder for Channel Coding. , 2019, , .		20
112	Framework on Deep Learning-Based Joint Hybrid Processing for mmWave Massive MIMO Systems. IEEE Access, 2020, 8, 106023-106035.	2.6	20
113	Reinforcement Learning Based Cooperative Coded Caching Under Dynamic Popularities in Ultra-Dense Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 5442-5456.	3.9	20
114	Deep Reinforcement Learning based Distributed Resource Allocation for V2V Broadcasting. , 2018, , .		18
115	User Association for Ultra-Dense mmWave Networks With Multi-Connectivity: A Multi-Label Classification Approach. IEEE Wireless Communications Letters, 2019, 8, 1579-1582.	3.2	18
116	Energy-Efficient OFDMA-Based Two-Way Relay. IEEE Transactions on Communications, 2015, 63, 3157-3169.	4.9	16
117	Spatially Correlated Massive MIMO Relay Systems With Low-Resolution ADCs. IEEE Transactions on Vehicular Technology, 2020, 69, 6541-6553.	3.9	16
118	Shallow Underwater Acoustic Massive MIMO Communications. IEEE Transactions on Signal Processing, 2021, 69, 1124-1139.	3.2	16
119	Resource Allocation for V2X Communications: A Large Deviation Theory Perspective. IEEE Wireless Communications Letters, 2019, 8, 1108-1111.	3.2	15
120	On Spatial Multiplexing Using Reconfigurable Intelligent Surfaces. IEEE Wireless Communications Letters, 2021, 10, 226-230.	3.2	15
121	HF Skywave Massive MIMO Communication. IEEE Transactions on Wireless Communications, 2022, 21, 2769-2785.	6.1	14
122	Graph-Based Robust Resource Allocation for Cognitive Radio Networks. IEEE Transactions on Signal Processing, 2015, 63, 3825-3836.	3.2	13
123	Model-Driven Deep Learning for Massive MU-MIMO With Finite-Alphabet Precoding. IEEE Communications Letters, 2020, 24, 2216-2220.	2.5	13
124	Deep-Unfolding Beamforming for Intelligent Reflecting Surface Assisted Full-Duplex Systems. IEEE Transactions on Wireless Communications, 2022, 21, 4784-4800.	6.1	13
125	Energy-Efficient Resource Allocation in OFDMA Networks. , 2011, , .		12
126	Deep Learning-Based Channel Estimation for Massive MIMO With Hybrid Transceivers. IEEE Transactions on Wireless Communications, 2022, 21, 5162-5174.	6.1	12

#	Article	IF	CITATIONS
127	Long-Lasting UAV-aided RIS Communications based on SWIPT. , 2022, , .		12
128	Performance Analysis of Indoor THz Communications with One-Bit Precoding. , 2018, , .		11
129	Model-Driven DNN Decoder for Turbo Codes: Design, Simulation, and Experimental Results. IEEE Transactions on Communications, 2020, 68, 6127-6140.	4.9	11
130	Deep Learning LMMSE Joint Channel, PN, and IQ Imbalance Estimator for Multicarrier MIMO Full-Duplex Systems. IEEE Wireless Communications Letters, 2022, 11, 111-115.	3.2	11
131	Multi - Agent Reinforcement Learning for Spectrum Sharing in Vehicular Networks. , 2019, , .		10
132	Optimal Mobile Association in Device-to-Device-Enabled Heterogeneous Networks. , 2015, , .		9
133	Energy Efficiency Tradeoff in Interference Channels. IEEE Access, 2016, 4, 4495-4508.	2.6	9
134	Online Deep Neural Network for Optimization in Wireless Communications. IEEE Wireless Communications Letters, 2022, 11, 933-937.	3.2	9
135	Robust Resource Allocation in Full-Duplex Cognitive Radio Networks. , 2016, , .		8
136	Resource Allocation for Low-Latency Vehicular Communications with Packet Retransmission. , 2018, , .		8
137	Wideband Channel Estimation for mmWave Massive MIMO Systems with Beam Squint Effect. , 2018, , .		8
138	When and how should decoding power be considered for achieving high energy efficiency?. , 2012, , .		7
139	Energy and spectral efficiency of distributed antenna systems. , 2013, , .		7
140	Energy efficiency of distributed MIMO systems. , 2014, , .		7
141	Cost-Efficient Cellular Networks Powered by Micro-Grids. IEEE Transactions on Wireless Communications, 2017, 16, 6047-6061.	6.1	7
142	Spatial-wideband effect in massive MIMO systems. , 2017, , .		7
143	Asymmetrical Uplink and Downlink Transceivers in Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2021, 70, 11632-11647.	3.9	7
144	Phase Retrieval Using Expectation Consistent Signal Recovery Algorithm Based on Hypernetwork. IEEE Transactions on Signal Processing, 2021, 69, 5770-5783.	3.2	7

#	Article	IF	CITATIONS
145	QoS driven energy-efficient design for downlink OFDMA networks. , 2012, , .		6
146	MAP-Based Iterative Channel Estimation for OFDM With Multiple Transmit Antennas Over Time-Varying Channels. IEEE Transactions on Wireless Communications, 2014, 13, 5084-5094.	6.1	6
147	Energy- and Spectral- Efficiency Tradeoff in Full-Duplex Communications. , 2016, , .		6
148	Learning to Compute Ergodic Rate for Multi-Cell Scheduling in Massive MIMO. IEEE Transactions on Wireless Communications, 2021, 20, 785-797.	6.1	6
149	Energy-efficient cooperative transmission in heterogeneous networks. , 2013, , .		5
150	Noncoherent Frequency Shift Keying for Ambient Backscatter Over OFDM Signals. , 2019, , .		5
151	Accelerating Resource Allocation for D2D Communications Using Imitation Learning. , 2019, , .		5
152	Low-Complexity Multicast Beamforming for Millimeter Wave Communications. IEEE Transactions on Vehicular Technology, 2020, 69, 12317-12320.	3.9	5
153	Joint User Grouping, Sparse Beamforming, and Subcarrier Allocation for D2D Underlaid Cache-Enabled C-RANs With Rate Splitting. IEEE Transactions on Vehicular Technology, 2022, 71, 3792-3806.	3.9	5
154	Energy-efficient configuration of spatial and frequency resources in MIMO-OFDMA systems. , 2012, , .		4
155	Energy-efficient spectrum access in Cognitive Radio. , 2013, , .		4
156	Power Leakage Elimination for Wideband mmWave Massive MIMO-OFDM Systems: An Energy-Focusing Window Approach. IEEE Transactions on Signal Processing, 2019, 67, 5479-5494.	3.2	4
157	Computing One-Bit Compressive Sensing via Double-Sparsity Constrained Optimization. IEEE Transactions on Signal Processing, 2022, 70, 1593-1608.	3.2	4
158	Joint downlink and uplink resource allocation for energy-efficient carrier aggregation. , 2014, , .		3
159	Wireless Link Scheduling for D2D Communications with Graph Embedding Technique. , 2020, , .		3
160	Energy-Efficient Power Allocation between Pilots and Data Symbols in Downlink OFDMA Systems. , 2011, , .		2
161	User selection based on limited feedback in device-to-device communications. , 2013, , .		2

162 Noncoherent MIMO Codes Construction Using Autoencoders. , 2019, , .

2

#	Article	IF	CITATIONS
163	Deep Learning Based Robust Precoder Design for Massive MIMO Downlink. , 2021, , .		2
164	Computation-Aided Adaptive Codebook Design for Millimeter Wave Massive MIMO. , 2020, , .		2
165	CSI feedback reduction for energy-efficient downlink OFDMA. , 2012, , .		1
166	Broadbeam design for massive MIMO systems with uniform rectangular array. , 2015, , .		1
167	3D MIMO with rank adaptation for LTE-A downlink transmission. , 2015, , .		1
168	On the design of broadbeam for massive MIMO systems. , 2016, , .		1
169	Fundamental EE Tradeoff in LTE-U Based Small Cell Systems. , 2018, , .		1
170	Deep Convolutional Neural Networks Enabled Fingerprint Localization for Massive MIMO-OFDM System. , 2019, , .		1
171	Sparsity-Enhancing Basis for Compressive Sensing Based Channel Feedback in Massive MIMO Systems. , 2014, , .		0
172	Energy-Efficient Power Control for Wireless Interference Networks. , 2014, , .		0
173	V2X-Enabled Energy-Efficient Transmission in Cellular Networks. , 2018, , .		0
174	Theoretical Framework toward Green Networks. , 2019, , 16-60.		0