
P Saravanan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10697698/publications.pdf Version: 2024-02-01

D <u>Sadavanan</u>

#	Article	IF	CITATIONS
1	A Simple Stereocontrolled Synthesis of Salinosporamide A. Journal of the American Chemical Society, 2004, 126, 6230-6231.	13.7	243
2	Films of Metal Nanocrystals Formed at Aqueousâ^'Organic Interfacesâ€. Journal of Physical Chemistry B, 2003, 107, 7391-7395.	2.6	125
3	Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method. Materials Research Bulletin, 2013, 48, 2878-2885.	5.2	100
4	Compliments of confinements: substitution and dimension induced magnetic origin and band-bending mediated photocatalytic enhancements in Bi _{1â^x} Dy _x FeO ₃ particulate and fiber nanostructures. Nanoscale, 2015, 7, 10667-10679.	5.6	80
5	Fe ₃ O ₄ @mesoporouspolyaniline: A Highly Efficient and Magnetically Separable Catalyst for Crossâ€Coupling of Aryl Chlorides and Phenols. Advanced Synthesis and Catalysis, 2011, 353, 1591-1600.	4.3	66
6	A Short, Stereocontrolled, and Practical Synthesis of α-Methylomuralide, a Potent Inhibitor of Proteasome Function. Journal of Organic Chemistry, 2003, 68, 2760-2764.	3.2	63
7	Influence of process variables on the quality of detonation gun sprayed alumina coatings. Surface and Coatings Technology, 2000, 123, 44-54.	4.8	57
8	Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures. Nanoscale, 2016, 8, 1147-1160.	5.6	49
9	A perspective approach towards appreciable size and cost-effective solar cell fabrication by synthesizing ZnO nanoparticles from Azadirachta indica leaves extract using domestic microwave oven. Journal of Materials Science: Materials in Electronics, 2020, 31, 4301-4309.	2.2	42
10	Submicron particles of Co, Ni and Co-Ni alloys. Bulletin of Materials Science, 2001, 24, 515-521.	1.7	41
11	Insights into the nitridation of zero-valent iron nanoparticles for the facile synthesis of iron nitride nanoparticles. RSC Advances, 2016, 6, 45850-45857.	3.6	36
12	Study on morphology and magnetic behavior of SmCo5 and SmCo5/Fe nanoparticles synthesized by surfactant-assisted ball milling. Journal of Alloys and Compounds, 2009, 480, 645-649.	5.5	35
13	Study of plasma- and detonation gun-sprayed alumina coatings using taguchi experimental design. Journal of Thermal Spray Technology, 2000, 9, 505-512.	3.1	30
14	A liquidâ^'liquid interface technique to form films of CuO nanowhiskers. Thin Solid Films, 2005, 491, 168-172.	1.8	30
15	Textured resin-bonded Sm(Co,Fe,Cu)5 nanostructured magnets exploiting magnetic field and surfactant-assisted milling. Journal of Alloys and Compounds, 2009, 477, 322-327.	5.5	30
16	Experimental design and performance analysis of alumina coatings deposited by a detonation spray process. Journal Physics D: Applied Physics, 2001, 34, 131-140.	2.8	28
17	Processing of Mn–Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing. Journal of Magnetism and Magnetic Materials, 2015, 374, 427-432.	2.3	28
18	Biofriendly and competent domestic microwave assisted method for the synthesis of ZnO nanoparticles from the extract of Azadirachta indica leaves. Materials Today: Proceedings, 2020, 33, 3160-3163.	1.8	27

#	Article	IF	CITATIONS
19	SmCo ₅ /Fe nanocomposite magnetic powders processed by magnetic field-assisted ball milling with and without surfactant. Journal Physics D: Applied Physics, 2007, 40, 5021-5026.	2.8	25
20	Influence of Co-substitution on the structural and magnetic properties of nanocrystalline Ba0.5Sr0.5Fe12O19. Journal of Crystal Growth, 2016, 452, 117-124.	1.5	25
21	Effect of annealing on phase composition, structural and magnetic properties of Sm-Co based nanomagnetic material synthesized by sol-gel process. Journal of Magnetism and Magnetic Materials, 2012, 324, 2158-2162.	2.3	24
22	Studies on magnetoelectric coupling in lead-free [(0.5) BCT-(0.5) BZT]-NiFe2O4 laminated composites at low and EMR frequencies. Journal of Alloys and Compounds, 2018, 743, 240-248.	5.5	24
23	Title is missing!. Journal of Materials Science Letters, 2003, 22, 1283-1285.	0.5	23
24	Synthesis of ZnO and ZnS nanocrystals by thermal decomposition of zinc(II) cupferron complex. Materials Letters, 2004, 58, 3528-3531.	2.6	20
25	Structural and magnetic properties of self-assembled Sm–Co spherical aggregates. Journal of Magnetism and Magnetic Materials, 2011, 323, 2083-2089.	2.3	20
26	Coercivity enhancement in Mn-Al-Cu flakes produced by surfactant-assisted milling. Applied Physics Letters, 2015, 107, 192407.	3.3	20
27	Dielectric and magnetic properties of Allium cepa and Raphanus sativus extracts biogenic ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 2021, 32, 590-603.	2.2	20
28	Highly anisotropic resin-bonded magnets processed with surfactant-coated SmCo5 nanocrystalline powders. Journal of Magnetism and Magnetic Materials, 2009, 321, 3138-3143.	2.3	18
29	Effect of sintering temperature on the structure and magnetic properties of SmCo5/Fe nanocomposite magnets prepared by spark plasma sintering. Intermetallics, 2009, 17, 517-522.	3.9	18
30	Effect of annealing on the magnetic properties of ball milled NiO powders. Journal of Magnetism and Magnetic Materials, 2015, 384, 296-301.	2.3	18
31	Large scale synthesis and formation mechanism of highly magnetic and stable iron nitride (ε-Fe ₃ N) nanoparticles. RSC Advances, 2015, 5, 56045-56048.	3.6	18
32	Effect of Co or Mn addition on the soft magnetic properties of amorphous Fe89â^'xZr11Bx (x=5, 10) alloy ribbons. Journal of Magnetism and Magnetic Materials, 2009, 321, 4097-4102.	2.3	17
33	Interplay between out-of-plane anisotropic L11-type CoPt and in-plane anisotropic NiFe layers in CoPt/NiFe exchange springs. Journal of Applied Physics, 2014, 115, 243905.	2.5	16
34	Electrical and magnetic effect of transition metals in SnSb nanoalloy. Applied Surface Science, 2014, 311, 503-507.	6.1	16
35	Study on the field-cooling induced magnetic interactions in Gd-doped NiO nanoparticles. Journal of Magnetism and Magnetic Materials, 2020, 493, 165713.	2.3	16
36	Microstructure, magnetic and Mössbauer studies on spark-plasma sintered Sm–Co–Fe/Fe(Co) nanocomposite magnets. Journal Physics D: Applied Physics, 2008, 41, 065001.	2.8	15

#	Article	IF	CITATIONS
37	Rapid synthesis of nano-magnetite by thermal plasma route and its magnetic properties. Materials and Manufacturing Processes, 2018, 33, 1701-1707.	4.7	15
38	Enhanced soft magnetic properties in magnetic field annealed amorphous Fe(Co)–Zr–B alloys. Journal of Applied Physics, 2011, 109, .	2.5	13
39	Effect of sintering temperature on the structure and magnetic properties of SmCo5/Fe nanocomposite magnets prepared by spark plasma sintering. Intermetallics, 2013, 42, 199-204.	3.9	13
40	A study on the origin of room temperature ferromagnetism in Ni1â^'Gd O nanoparticles. Journal of Magnetism and Magnetic Materials, 2015, 394, 179-184.	2.3	13
41	Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies. Journal of Solid State Electrochemistry, 2016, 20, 1743-1751.	2.5	12
42	Role of Ta-spacer layer on tuning the tilt angle magnetic anisotropy of L11-CoPt/Ta/NiFe exchange springs. Journal of Magnetism and Magnetic Materials, 2017, 432, 82-89.	2.3	12
43	Effect of magnetic field annealing on the magneto-elastic properties of nanocrystalline NiFe 2 O 4. Journal of Magnetism and Magnetic Materials, 2017, 436, 31-34.	2.3	12
44	Simple Enantiospecific Syntheses of the C(2)-Diastereomers of Omuralide and 3-Methylomuralide. Organic Letters, 2005, 7, 2703-2705.	4.6	11
45	Structural and Mössbauer studies on mechanical milled SmCo5/α-Fe nanocomposite magnetic powders. Intermetallics, 2008, 16, 636-641.	3.9	11
46	Arrays of magnetic nanoparticles capped with alkylamines. Pramana - Journal of Physics, 2002, 58, 371-383.	1.8	10
47	Effect of Fe layer thickness and Fe/Co intermixing on the magnetic properties of Sm–Co/Fe bilayer exchange-spring magnets. Journal Physics D: Applied Physics, 2013, 46, 155002.	2.8	10
48	A surfactant-assisted high energy ball milling technique to produce colloidal nanoparticles and nanocrystalline flakes in Mn–Al alloys. RSC Advances, 2015, 5, 92406-92417.	3.6	10
49	Mechanical activation on aluminothermic reduction and magnetic properties of NiO powders. Journal Physics D: Applied Physics, 2017, 50, 21LT01.	2.8	10
50	Domestic microwave supported green synthesis of ZnO nanoparticles for electronic, mechano, rheological and frequency intensifying applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 14144-14158.	2.2	10
51	Influence of spraying variables on structure and properties of plasma sprayed alumina coatings. Advances in Applied Ceramics, 2000, 99, 241-247.	0.4	9
52	Enhanced magnetic properties of NiO powders by the mechanical activation of aluminothermic reduction of NiO prepared by a ball milling process. Journal of Magnetism and Magnetic Materials, 2016, 418, 253-259.	2.3	9
53	Application of Taguchi Method to the Optimization of Detonation Spraying Process. Materials and Manufacturing Processes, 2000, 15, 139-153.	4.7	8
54	A comparative study on the PMA behavior of 5-nm thick Co49Pt51 films grown at room temperature and at high temperature on glass substrates. Journal of Magnetism and Magnetic Materials, 2014, 361, 7-11.	2.3	8

#	Article	IF	CITATIONS
55	Modifying exchange-spring behavior of CoPt/NiFe bilayer by inserting a Pt or Ru spacer. Journal of Applied Physics, 2015, 117, 17A715.	2.5	8
56	Optimization of sputtering parameters for SmCo thin films using design of experiments. Applied Surface Science, 2012, 261, 110-117.	6.1	7
57	Exchange coupled rare-earth free Mn-Al/Fe nanocomposite magnets by spark plasma sintering. Materials Letters, 2014, 137, 369-372.	2.6	7
58	MWCNT reinforced Ï"-Mn-Al nanocomposite magnets through spark plasma sintering. Journal of Alloys and Compounds, 2017, 695, 364-371.	5.5	7
59	Interfacial layer formation during high-temperature deposition of Sm-Co magnetic thin films on Si (100) substrates. Intermetallics, 2019, 106, 36-47.	3.9	7
60	Processing and characterization of Ba0.5Sr0.5Fe12O19/Y3Fe5O12 nanocomposite ferrites towards permanent magnet applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 10585-10592.	2.2	7
61	Annealing induced compositional changes in SmCo5/Fe/SmCo5 exchange spring trilayers and its impact on magnetic properties. Journal of Alloys and Compounds, 2013, 574, 191-195.	5.5	6
62	Manifestation of weak ferromagnetism and photocatalytic activity in bismuth ferrite nanoparticles. AIP Conference Proceedings, 2013, , .	0.4	6
63	Study on the occurrence of spontaneously established perpendicular exchange bias in Co49Pt51/IrMn bilayers. Journal of Applied Physics, 2014, 115, 17D726.	2.5	6
64	Thin magnetic films of Sm–Co nanocrystallites exploiting spin coating deposition. Thin Solid Films, 2011, 519, 6290-6296.	1.8	5
65	Tailoring the structural and magnetic properties of sol-gel derived Sm–Co nanogranular films. Journal of Magnetism and Magnetic Materials, 2012, 324, 1201-1204.	2.3	5
66	Correlation between static and dynamic magnetic properties of highly perpendicular magnetizedCo49Pt51thin films. Physical Review B, 2015, 92, .	3.2	4
67	Structural and magnetic properties of spark plasma sintered Co-Mg-Zn substituted Ba-Sr hexagonal ferrite magnets. Journal of Magnetism and Magnetic Materials, 2018, 448, 243-249.	2.3	4
68	Magnetic Properties of FePt based Nanocomposite Thin Films Grown on Low Cost Substrates. Physics Procedia, 2014, 54, 23-29.	1.2	4
69	Granular films of Fe/Sm–Co magnetic nanocomposites through spin-assisted layer-by-layer deposition. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	2
70	Deposition temperature mediated tunable tilt angle magnetization in Co–Pt/Ni81Fe19 exchange springs. Journal of Magnetism and Magnetic Materials, 2015, 381, 382-385.	2.3	2
71	Influence of He and N2 plasma on in situ surface passivated Fe nanopowders by plasma arc discharge. Journal of Physics Condensed Matter, 2019, 31, 475302.	1.8	2
72	Structural and magnetic properties of rare-earth-free MnAl(MCNT)/Fe nanocomposite magnets processed by resin-bonding technique. Journal of Materials Science: Materials in Electronics, 2020, 31, 9878-9887.	2.2	2

#	Article	IF	CITATIONS
73	Study of Plasma- and Detonation Gun-Sprayed Alumina Coatings Using Taguchi Experimental Design. Journal of Thermal Spray Technology, 2000, 9, 505-512.	3.1	2
74	Enhanced magnetic behavior of hydrogenated Fe and FeCo nanoparticles prepared by chemical reduction method. AIP Conference Proceedings, 2020, , .	0.4	2
75	Magnetic and electronic properties of hard soft magnetic interface in (YCo5 Co)[0001] and (YFe5 Co)[0001] superlattices. Journal of Magnetism and Magnetic Materials, 2016, 418, 92-98.	2.3	1
76	Study on the domain structure and tunable spin orientation in L11-CoPt/NiFe exchange springs with Ta-spacer. Journal of Magnetism and Magnetic Materials, 2018, 448, 316-321.	2.3	1
77	Sparking potentials in cusp and magnetic mirror fields. Plasma Devices and Operations, 1999, 7, 51-63.	0.6	Ο
78	Study on the depth profile analysis of Fe/Co intermixing in [SmCo5/Fe]11 magnetic multilayers. Physica B: Condensed Matter, 2014, 448, 2-5.	2.7	0