
Vivek Balasubramaniam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10697337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1073-L1084.	2.9	207
2	Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L529-L535.	2.9	186
3	Inhaled Nitric Oxide Enhances Distal Lung Growth after Exposure to Hyperoxia in Neonatal Rats. Pediatric Research, 2005, 58, 22-29.	2.3	168
4	Cord blood angiogenic progenitor cells are decreased in bronchopulmonary dysplasia. European Respiratory Journal, 2012, 40, 1516-1522.	6.7	124
5	Mild hypoxia impairs alveolarization in the endothelial nitric oxide synthase-deficient mouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L964-L971.	2.9	106
6	Endothelial Colony-forming Cells from Preterm Infants Are Increased and More Susceptible to Hyperoxia. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 454-461.	5.6	104
7	Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L1068-L1078.	2.9	101
8	Bone marrow-derived angiogenic cells restore lung alveolar and vascular structure after neonatal hyperoxia in infant mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L315-L323.	2.9	91
9	Inhaled NO restores lung structure in eNOS-deficient mice recovering from neonatal hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L119-L127.	2.9	89
10	Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochemical and Biophysical Research Communications, 2018, 503, 2653-2658.	2.1	89
11	COVID-19 impact on research, lessons learned from COVID-19 research, implications for pediatric research. Pediatric Research, 2020, 88, 148-150.	2.3	89
12	Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L73-L81.	2.9	85
13	Hyperoxia disrupts vascular endothelial growth factor-nitric oxide signaling and decreases growth of endothelial colony-forming cells from preterm infants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1160-L1169.	2.9	63
14	Intrauterine Pulmonary Hypertension Impairs AngiogenesisIn Vitro. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1146-1153.	5.6	59
15	Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L735-L748.	2.9	57
16	Pulmonary hypertension impairs alveolarization and reduces lung growth in the ovine fetus. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L648-L654.	2.9	52
17	Early inhaled nitric oxide treatment decreases apoptosis of endothelial cells in neonatal rat lungs after vascular endothelial growth factor inhibition. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1271-L1280.	2.9	51
18	Inhaled nitric oxide improves lung structure and pulmonary hypertension in a model of bleomycin-induced bronchopulmonary dysplasia in neonatal rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L1103-L1111.	2.9	50

#	Article	IF	CITATIONS
19	Chronic intrauterine pulmonary hypertension increases endothelial cell Rho kinase activity and impairs angiogenesis in vitro. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L680-L687.	2.9	32
20	Nitric oxide augments fetal pulmonary artery endothelial cell angiogenesis in vitro. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L1111-L1116.	2.9	31
21	Sensitive Immunofluorescent Staining of Cells via Generation of Fluorescent Nanoscale Polymer Films in Response to Biorecognition. Journal of Histochemistry and Cytochemistry, 2011, 59, 76-87.	2.5	22
22	Cord Blood Endothelial Colony-Forming Cells from Newborns with Congenital Diaphragmatic Hernia. Journal of Pediatrics, 2013, 163, 905-907.	1.8	18
23	Umbilical Cord Blood Circulating Progenitor Cells and Endothelial Colony-Forming Cells Are Decreased in Preeclampsia. Reproductive Sciences, 2017, 24, 1088-1096.	2.5	18
24	Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization. Journal of Nanoparticle Research, 2011, 13, 331-346.	1.9	16
25	Angiogenic Therapy for Bronchopulmonary Dysplasia. Circulation, 2005, 112, 2383-2385.	1.6	12
26	Academic Advocacy and Promotion: How to Climb a Ladder Not Yet Built. Journal of Pediatrics, 2019, 213, 4-7.e1.	1.8	8
27	Interfacial Polymerization for Colorimetric Labeling of Protein Expression in Cells. PLoS ONE, 2014, 9, e115630.	2.5	7
28	Abolishing Racism and Other Forms of Oppression in Scholarly Communication. Journal of Adolescent Health, 2021, 69, 10-13.	2.5	3
29	Policy threats to maternal and child nutrition: putting the unborn child at a lifelong disadvantage. Pediatric Research, 2018, 84, 580-581.	2.3	0
30	A new population of bone marrow cells restores lung growth in a model of Bronchopulmonary Dysplasia (BPD). FASEB Journal, 2008, 22, 1197.1.	0.5	0