Benjamin Solsona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1069642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts. Science, 2006, 311, 362-365.	6.0	1,976
2	Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science, 2009, 323, 1037-1041.	6.0	759
3	Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. Journal of Catalysis, 2005, 236, 69-79.	3.1	488
4	The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation. Applied Catalysis B: Environmental, 2015, 174-175, 403-412.	10.8	333
5	Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis, 2006, 242, 71-81.	3.1	322
6	Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Applied Catalysis B: Environmental, 2008, 84, 176-184.	10.8	221
7	Vanadium Oxide Supported on Mesoporous MCM-41 as Selective Catalysts in the Oxidative Dehydrogenation of Alkanes. Journal of Catalysis, 2001, 203, 443-452.	3.1	211
8	Direct Synthesis of Hydrogen Peroxide from H2and O2Using Al2O3Supported Auâ^Pd Catalysts. Chemistry of Materials, 2006, 18, 2689-2695.	3.2	183
9	Direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd/Fe2O3 catalysts. Journal of Materials Chemistry, 2005, 15, 4595.	6.7	180
10	Deep oxidation of volatile organic compounds using ordered cobalt oxides prepared by a nanocasting route. Applied Catalysis A: General, 2010, 386, 16-27.	2.2	164
11	Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons. Applied Catalysis B: Environmental, 2013, 132-133, 116-122.	10.8	158
12	The Preparation, Characterization, and Catalytic Behavior of MoVTeNbO Catalysts Prepared by Hydrothermal Synthesis. Journal of Catalysis, 2002, 209, 445-455.	3.1	155
13	Selective oxidation of CO in the presence of H2, H2O and CO2via gold for use in fuel cells. Chemical Communications, 2005, , 3385.	2.2	146
14	Oxidative dehydrogenation of ethane over NiO–CeO2 mixed oxides catalysts. Catalysis Today, 2012, 180, 51-58.	2.2	136
15	Supported gold catalysts for the total oxidation of alkanes and carbon monoxide. Applied Catalysis A: General, 2006, 312, 67-76.	2.2	134
16	Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM-5 Zeolites. ACS Sustainable Chemistry and Engineering, 2016, 4, 1653-1660.	3.2	126
17	Total oxidation of VOCs on mesoporous iron oxide catalysts: Soft chemistry route versus hard template method. Chemical Engineering Journal, 2016, 290, 273-281.	6.6	109
18	Oxidative dehydrogenation of ethane over Ni–W–O mixed metal oxide catalysts. Journal of Catalysis, 2011, 280, 28-39.	3.1	108

#	Article	IF	CITATIONS
19	Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au–Pd catalysts. Catalysis Today, 2007, 122, 397-402.	2.2	103
20	Naphthalene total oxidation over metal oxide catalysts. Applied Catalysis B: Environmental, 2006, 66, 92-99.	10.8	95
21	In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: A mini-review. Catalysis Today, 2015, 248, 115-127.	2.2	95
22	Selective oxidation of propane and ethane on diluted Mo–V–Nb–Te mixed-oxide catalysts. Journal of Catalysis, 2007, 252, 271-280.	3.1	94
23	Selective oxidation of CO in the presence of H2, H2O and CO2utilising Au/α-Fe2O3catalysts for use in fuel cells. Journal of Materials Chemistry, 2006, 16, 199-208.	6.7	92
24	Title is missing!. Catalysis Letters, 2001, 74, 149-154.	1.4	87
25	Selective oxidative dehydrogenation of ethane over SnO2-promoted NiO catalysts. Journal of Catalysis, 2012, 295, 104-114.	3.1	87
26	The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure. Chemical Engineering Journal, 2013, 229, 547-558.	6.6	87
27	Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Applied Catalysis B: Environmental, 2006, 62, 66-76.	10.8	82
28	Deep oxidation of pollutants using gold deposited on a high surface area cobalt oxide prepared by a nanocasting route. Journal of Hazardous Materials, 2011, 187, 544-552.	6.5	80
29	Molybdenum–vanadium supported on mesoporous alumina catalysts for the oxidative dehydrogenation of ethane. Catalysis Today, 2006, 117, 228-233.	2.2	78
30	Preparation, Characterisation and Catalytic Behaviour of a New TeVMoO Crystalline Phase. Catalysis Letters, 2002, 78, 383-387.	1.4	75
31	Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation. Applied Catalysis B: Environmental, 2013, 132-133, 98-106.	10.8	73
32	Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. Journal of Catalysis, 2012, 285, 103-114.	3.1	71
33	Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts. Journal of Catalysis, 2005, 229, 1-11.	3.1	70
34	Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2012, 127, 77-88.	10.8	70
35	Nanocrystalline cobalt oxide: a catalyst for selective alkane oxidation under ambient conditions. Chemical Communications, 2006, , 3417-3419.	2.2	68
36	Influence of preparation conditions of nano-crystalline ceria catalysts on the total oxidation of naphthalene, a model polycyclic aromatic hydrocarbon. Applied Catalysis B: Environmental, 2007, 76, 248-256.	10.8	68

Benjamin Solsona

#	Article	IF	CITATIONS
37	Promoting the activity and selectivity of high surface area Ni–Ce–O mixed oxides by gold deposition for VOC catalytic combustion. Chemical Engineering Journal, 2011, 175, 271-278.	6.6	64
38	The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene. Applied Catalysis B: Environmental, 2010, 93, 395-405.	10.8	62
39	The selective oxidation of propane on Mo-V-Te-Nb-O catalysts. Catalysis Today, 2003, 81, 87-94.	2.2	61
40	Nano-crystalline Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons. Catalysis Letters, 2005, 105, 183-189.	1.4	60
41	Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs). Chemical Engineering Journal, 2019, 366, 100-111.	6.6	56
42	Complete oxidation of short chain alkanes using a nanocrystalline cobalt oxide catalyst. Catalysis Letters, 2007, 116, 116-121.	1.4	55
43	High activity mesoporous copper doped cerium oxide catalysts for the total oxidation of polyaromatic hydrocarbon pollutants. Chemical Communications, 2012, 48, 4704.	2.2	52
44	Oxidative dehydrogenation of ethane on promoted VPO catalysts. Applied Catalysis A: General, 2003, 249, 81-92.	2.2	51
45	TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts. Applied Catalysis A: General, 2009, 365, 222-230.	2.2	50
46	Total oxidation of naphthalene using bulk manganese oxide catalysts. Applied Catalysis A: General, 2013, 450, 169-177.	2.2	49
47	Porous clays heterostructures as supports of iron oxide for environmental catalysis. Chemical Engineering Journal, 2018, 334, 1159-1168.	6.6	48
48	The effect of gold addition on the catalytic performance of copper manganese oxide catalysts for the total oxidation of propane. Applied Catalysis B: Environmental, 2011, 101, 388-396.	10.8	47
49	NiO diluted in high surface area TiO 2 as an efficient catalyst for the oxidative dehydrogenation of ethane. Applied Catalysis A: General, 2017, 536, 18-26.	2.2	45
50	Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chemical Engineering Journal, 2012, 187, 391-400.	6.6	44
51	Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of Au. New Journal of Chemistry, 2004, 28, 708.	1.4	40
52	Unexpected promotion of Au/TiO2 by nitrate for CO oxidation. Chemical Communications, 2005, , 2351.	2.2	40
53	Promoted NiO Catalysts for the Oxidative Dehydrogenation of Ethane. Topics in Catalysis, 2014, 57, 1248-1255.	1.3	40
54	Enhanced H2O2 production over Au-rich bimetallic Au–Pd nanoparticles on ordered mesoporous carbons. Catalysis Today, 2015, 248, 48-57.	2.2	40

#	Article	IF	CITATIONS
55	Reaction products and pathways in the selective oxidation of C2–C4 alkanes on MoVTeNb mixed oxide catalysts. Catalysis Today, 2010, 157, 291-296.	2.2	39
56	Low temperature total oxidation of toluene by bimetallic Au–Ir catalysts. Catalysis Science and Technology, 2017, 7, 2886-2896.	2.1	39
57	Total Oxidation of Propane Using CeO2 and CuO-CeO2 Catalysts Prepared Using Templates of Different Nature. Catalysts, 2017, 7, 96.	1.6	39
58	Supported Ni–W–O Mixed Oxides as Selective Catalysts for the Oxidative Dehydrogenation of Ethane. Topics in Catalysis, 2009, 52, 751-757.	1.3	38
59	Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane. Catalysis Science and Technology, 2016, 6, 3419-3429.	2.1	38
60	Influence of gel composition in the synthesis of MoVTeNb catalysts over their catalytic performance in partial propane and propylene oxidation. Catalysis Today, 2010, 149, 260-266.	2.2	37
61	Siliceous ITQ-6: A new support for vanadia in the oxidative dehydrogenation of propane. Microporous and Mesoporous Materials, 2006, 94, 339-347.	2.2	36
62	Redox and Catalytic Properties of Promoted NiO Catalysts for the Oxidative Dehydrogenation of Ethane. Journal of Physical Chemistry C, 2017, 121, 25132-25142.	1.5	36
63	Deep oxidation of propane using palladium–titania catalysts modified by niobium. Applied Catalysis A: General, 2008, 350, 63-70.	2.2	35
64	Support effects on NiO-based catalysts for the oxidative dehydrogenation (ODH) of ethane. Catalysis Today, 2019, 333, 10-16.	2.2	35
65	Selective propane oxidation over MoVSbO catalysts. On the preparation, characterization and catalytic behavior of M1 phase. Journal of Catalysis, 2009, 262, 35-43.	3.1	34
66	Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation. Journal of Catalysis, 2014, 317, 167-175.	3.1	34
67	High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO ₂ Nanodomains in Structure and Activity. ACS Catalysis, 2015, 5, 1078-1086.	5.5	34
68	Selective oxidation of n-butane over MoV-containing oxidic bronze catalysts. Journal of Catalysis, 2007, 250, 128-138.	3.1	32
69	Highly dispersed encapsulated AuPd nanoparticles on ordered mesoporous carbons for the direct synthesis of H2O2 from molecular oxygen and hydrogen. Chemical Communications, 2012, 48, 5316.	2.2	32
70	Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catalysis Today, 2015, 254, 12-20.	2.2	32
71	The Oxidative Destruction of Hydrocarbon Volatile Organic Compounds Using Palladium–Vanadia–Titania Catalysts. Catalysis Letters, 2004, 97, 99-103.	1.4	31
72	Selective oxidation of propene to acrolein on Mo-Te mixed oxides catalysts prepared from ammonium telluromolybdates. Journal of Molecular Catalysis A, 2002, 184, 335-347.	4.8	29

Benjamin Solsona

#	Article	IF	CITATIONS
73	Ceria and Gold/Ceria Catalysts for the Abatement of Polycyclic Aromatic Hydrocarbons: An InÂSitu DRIFTS Study. Topics in Catalysis, 2009, 52, 492-500.	1.3	29
74	Selective oxidation of propane over alkali-doped Mo–V–Sb–O catalysts. Catalysis Today, 2009, 141, 294-299.	2.2	28
75	Title is missing!. Catalysis Letters, 2000, 69, 217-221.	1.4	26
76	SiO2-supported vanadium magnesium mixed oxides as selective catalysts for the oxydehydrogenation of short chain alkanes. Applied Catalysis A: General, 2001, 208, 99-110.	2.2	26
77	Title is missing!. Catalysis Letters, 2003, 89, 249-253.	1.4	25
78	Mo-containing tetragonal tungsten bronzes. The influence of tellurium on catalytic behaviour in selective oxidation of propene. Journal of Catalysis, 2009, 265, 43-53.	3.1	24
79	Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol. Journal of Hazardous Materials, 2009, 171, 393-399.	6.5	24
80	Glycerol Selective Oxidation to Lactic Acid over AuPt Nanoparticles; Enhancing Reaction Selectivity and Understanding by Support Modification. ChemCatChem, 2020, 12, 3097-3107.	1.8	23
81	Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis, 2017, 354, 236-249.	3.1	22
82	Selective oxidation of propane and propene on MoVNbTeO catalysts. Catalysis Today, 2004, 91-92, 247-250.	2.2	21
83	Total Oxidation of Naphthalene Using Mesoporous CeO2 Catalysts Synthesized by Nanocasting from Two Dimensional SBA-15 and Three Dimensional KIT-6 and MCM-48 Silica Templates. Catalysis Letters, 2010, 134, 110-117.	1.4	21
84	Oxidative dehydrogenation of ethane on Cr, mixed Al/Cr and mixed Ga/Cr oxide pillared zirconium phosphate materials. Journal of Molecular Catalysis A, 2000, 153, 199-207.	4.8	20
85	The influence of cerium to urea preparation ratio of nanocrystalline ceria catalysts for the total oxidation of naphthalene. Catalysis Today, 2008, 137, 373-378.	2.2	19
86	Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials. Journal of Materials Chemistry, 2010, 20, 6780.	6.7	19
87	Niobium phosphates as new highly selective catalysts for the oxidative dehydrogenation of ethane. Physical Chemistry Chemical Physics, 2011, 13, 17395.	1.3	19
88	Oxidative dehydrogenation of ethane: A study over the structure and robustness of Ni–W–O catalysts. Fuel Processing Technology, 2014, 119, 105-113.	3.7	19
89	Mo–W-containing tetragonal tungsten bronzes through isomorphic substitution of molybdenum by tungsten. Catalysis Today, 2010, 158, 162-169.	2.2	18
90	The significance of the order of impregnation on the activity of vanadia promoted palladium-alumina catalysts for propane total oxidation. Catalysis Science and Technology, 2011, 1, 1367.	2.1	18

#	Article	IF	CITATIONS
91	The hydrothermal synthesis of tetragonal tungsten bronze-based catalysts for the selective oxidation of hydrocarbons. Chemical Communications, 2007, , 5040.	2.2	17
92	Ferric sludge derived from the process of water purification as an efficient catalyst and/or support for the removal of volatile organic compounds. Chemosphere, 2019, 219, 286-295.	4.2	17
93	Optimizing Both Catalyst Preparation and Catalytic Behaviour for the Oxidative Dehydrogenation of Ethane of Ni–Sn–O Catalysts. Topics in Catalysis, 2016, 59, 1564-1572.	1.3	16
94	Oxidative dehydrogenation of ethane on diluted or promoted nickel oxide catalysts: Influence of the promoter/diluter. Catalysis Today, 2021, 363, 27-35.	2.2	16
95	Eco-Friendly Cavity-Containing Iron Oxides Prepared by Mild Routes as Very Efficient Catalysts for the Total Oxidation of VOCs. Materials, 2018, 11, 1387.	1.3	15
96	Optimization of the performance of bulk NiO catalyst in the oxidative dehydrogenation of ethane by tuning the synthesis parameters. Fuel Processing Technology, 2022, 229, 107182.	3.7	15
97	Cu-Ga3+-doped wurtzite ZnO interface as driving force for enhanced methanol production in co-precipitated Cu/ZnO/Ga2O3 catalysts. Journal of Catalysis, 2022, 407, 149-161.	3.1	15
98	The Influence of Platinum Addition on Nano-Crystalline Ceria Catalysts for the Total Oxidation of Naphthalene a Model Polycyclic Aromatic Hydrocarbon. Catalysis Letters, 2011, 141, 1732-1738.	1.4	14
99	Partial oxidation of methane and methanol on FeOx-, MoOx- and FeMoOx -SiO2 catalysts prepared by sol-gel method: A comparative study. Molecular Catalysis, 2020, 491, 110982.	1.0	14
100	Optimization of the Zr-loading on siliceous support catalysts leads to a suitable Lewis/BrÃ,nsted acid sites ratio to produce high yields to γ-valerolactone from furfural in one-pot. Fuel, 2022, 324, 124549.	3.4	14
101	Vanadium Supported on Alumina and/or Zirconia Catalysts for the Selective Transformation of Ethane and Methanol. Catalysts, 2018, 8, 126.	1.6	13
102	The Key Role of Nanocasting in Goldâ€based Fe ₂ O ₃ Nanocasted Catalysts for Oxygen Activation at the Metalâ€support Interface. ChemCatChem, 2019, 11, 1915-1927.	1.8	13
103	Evolution of the optimal catalytic systems for the oxidative dehydrogenation of ethane: The role of adsorption in the catalytic performance. Journal of Catalysis, 2022, 408, 388-400.	3.1	12
104	The nickel-support interaction as determining factor of the selectivity to ethylene in the oxidative dehydrogenation of ethane over nickel oxide/alumina catalysts. Applied Catalysis A: General, 2021, 623, 118242.	2.2	12
105	Stable Manganeseâ€Oxide Composites as Cathodes for Znâ€Ion Batteries: Interface Activation from In Situ Layer Electrochemical Deposition under 2ÂV. Advanced Materials Interfaces, 2022, 9, .	1.9	12
106	Laser flash photolysis of metal oxide supported vanadyl catalysts. Spectroscopic evidence for the ligand-to-metal charge-transfer state. Journal of Materials Chemistry, 2006, 16, 216-220.	6.7	11
107	Supported iridium catalysts for the total oxidation of short chain alkanes and their mixtures: Influence of the support. Chemical Engineering Journal, 2021, 417, 127999.	6.6	11
108	Mixed oxide Ti Si O prepared by non-hydrolytic Xerogel method as a diluter of nickel oxide for the oxidative dehydrogenation of ethane. Catalysis Today, 2018, 299, 93-101.	2.2	10

#	Article	IF	CITATIONS
109	Ni Supported on Natural Clays as a Catalyst for the Transformation of Levulinic Acid into Î ³ -Valerolactone without the Addition of Molecular Hydrogen. Energies, 2020, 13, 3448.	1.6	10
110	Selective oxidation of C3–C4 olefins over Mo-containing catalysts with tetragonal tungsten bronze structure. Catalysis Today, 2009, 141, 311-316.	2.2	9
111	Influence of the Nature of the Promoter in NiO Catalysts on the Selectivity to Olefin During the Oxidative Dehydrogenation of Propane and Ethane. Topics in Catalysis, 2020, 63, 1731-1742.	1.3	9
112	Insights into the production of upgraded biofuels using Mgâ€loaded mesoporous ZSMâ€5 zeolites. ChemCatChem, 2020, 12, 5236-5249.	1.8	9
113	Influence of annealing atmosphere on photoelectrochemical response of TiO2 nanotubes anodized under controlled hydrodynamic conditions. Journal of Electroanalytical Chemistry, 2021, 897, 115579.	1.9	9
114	Oxidative dehydrogenation of ethane on vanadium-phosphorus oxide catalysts. Studies in Surface Science and Catalysis, 2000, 130, 1853-1858.	1.5	8
115	Effect of potassium on the structure and reactivity of vanadium species in VOx/Al2O3 catalysts. Studies in Surface Science and Catalysis, 2000, 130, 767-772.	1.5	8
116	Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation. Applied Catalysis A: General, 2019, 582, 117107.	2.2	8
117	(Ag)Pd-Fe3O4 Nanocomposites as Novel Catalysts for Methane Partial Oxidation at Low Temperature. Nanomaterials, 2020, 10, 988.	1.9	8
118	Î ³ -valerolactone from levulinic acid and its esters: Substrate and reaction media determine the optimal catalyst. Applied Catalysis A: General, 2021, 623, 118276.	2.2	8
119	Influence of Zn(NO3)2 concentration during the ZnO electrodeposition on TiO2 nanosponges used in photoelectrochemical applications. Ceramics International, 2022, 48, 14460-14472.	2.3	8
120	Selective Oxidation of Propane Over AMoVSbO Catalysts (AÂ=ÂLi, Na, K, Rb or Cs). Topics in Catalysis, 2008, 50, 74-81.	1.3	7
121	Photocatalytic Activity of Mesoporous α-Fe2O3 Synthesized via Soft Chemistry and Hard Template Methods for Degradation of Azo Dye Orange II. Catalysis Letters, 2018, 148, 1289-1295.	1.4	7
122	Gas phase heterogeneous partial oxidation reactions. , 2018, , 211-286.		7
123	Low temperature conversion of levulinic acid into Î ³ -valerolactone using Zn to generate hydrogen from water and nickel catalysts supported on sepiolite. RSC Advances, 2020, 10, 20395-20404.	1.7	7
124	Enhanced NiO Dispersion on a High Surface Area Pillared Heterostructure Covered by Niobium Leads to Optimal Behaviour in the Oxidative Dehydrogenation of Ethane. Chemistry - A European Journal, 2020, 26, 9371-9381.	1.7	7
125	Highly Active Co3O4-Based Catalysts for Total Oxidation of Light C1–C3 Alkanes Prepared by a Simple Soft Chemistry Method: Effect of the Heat-Treatment Temperature and Mixture of Alkanes. Materials, 2021, 14, 7120.	1.3	7
126	Easy Method for the Transformation of Levulinic Acid into Gamma-Valerolactone Using a Nickel Catalyst Derived from Nanocasted Nickel Oxide. Materials, 2019, 12, 2918.	1.3	6

#	Article	IF	CITATIONS
127	Tungsten-titanium mixed oxide bronzes: Synthesis, characterization and catalytic behavior in methanol transformation. Applied Catalysis A: General, 2019, 582, 117092.	2.2	6
128	Modification of VPO catalysts for oxidative dehydrogenation of ethane. Theoretical and Experimental Chemistry, 1999, 35, 275-279.	0.2	4
129	The Catalytic Oxidation of Hydrocarbon Volatile Organic Compounds. , 2014, , 51-90.		4
130	Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts. Fuel Processing Technology, 2015, 134, 290-296.	3.7	4
131	Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis, 2018, 360, 187-200.	3.1	4
132	Te-doped MoV-Oxide (M1 phase) for ethane ODH. The role of tellurium on morphology, thermal stability and catalytic behaviour. Applied Catalysis A: General, 2022, 643, 118780.	2.2	4
133	Assessing the Electrochemical Performance of Different Nanostructured CeO2 Samples as Anodes for Lithium-Ion Batteries. Applied Sciences (Switzerland), 2022, 12, 22.	1.3	3
134	The promoter effect of Nb species on the catalytic performance of Ir-based catalysts for VOCs total oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 108261.	3.3	2
135	On the nature and structure of new MoVTeO and MoVTeNbO crystalline phases. Materials Research Society Symposia Proceedings, 2002, 755, 1.	0.1	0
136	ADAPTATION OF NEW ONLINE EVALUATION METHODOLOGIES IN DIFFERENT DEGREES OF THE SCHOOL OF ENGINEERING OF THE UNIVERSITY OF VALENCIA DUE TO COVID-19. EDULEARN Proceedings, 2021, , .	0.0	0
137	DESIGN OF ASSESSMENT RUBRICS FOR THE SUBJECT "PROCESS AND PRODUCT ENGINEERING II―OF THE CHEMICAL ENGINEERING DEGREE. EDULEARN Proceedings, 2021, , .	0.0	Ο