
Douglas E Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10696247/publications.pdf Version: 2024-02-01

DOLICIAS E EVANS

#	Article	IF	CITATIONS
1	Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in U.S. facilities. Particle and Fibre Toxicology, 2020, 17, 62.	6.2	38
2	Evaluation of total and inhalable samplers for the collection of carbon nanotube and carbon nanofiber aerosols. Aerosol Science and Technology, 2019, 53, 958-970.	3.1	1
3	Airborne contaminants during controlled residential fires. Journal of Occupational and Environmental Hygiene, 2018, 15, 399-412.	1.0	61
4	Exposure assessments for a cross-sectional epidemiologic study of US carbon nanotube and nanofiber workers. International Journal of Hygiene and Environmental Health, 2018, 221, 429-440.	4.3	36
5	Carbon nanotube and nanofiber exposure and sputum and blood biomarkers of early effect among U.S. workers. Environment International, 2018, 116, 214-228.	10.0	56
6	Association of pulmonary, cardiovascular, and hematologic metrics with carbon nanotube and nanofiber exposure among U.S. workers: a cross-sectional study. Particle and Fibre Toxicology, 2018, 15, 22.	6.2	37
7	<i>In Vivo</i> Toxicity Assessment of Occupational Components of the Carbon Nanotube Life Cycle To Provide Context to Potential Health Effects. ACS Nano, 2017, 11, 8849-8863.	14.6	44
8	Ultrafine and respirable particle exposure during vehicle fire suppression. Environmental Sciences: Processes and Impacts, 2015, 17, 1749-1759.	3.5	12
9	Volatile Organic Compounds Off-gassing from Firefighters' Personal Protective Equipment Ensembles after Use. Journal of Occupational and Environmental Hygiene, 2015, 12, 404-414.	1.0	75
10	Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits. Annals of Occupational Hygiene, 2015, 59, 705-723.	1.9	85
11	Comment on Comparison of Powder Dustiness Methods. Annals of Occupational Hygiene, 2014, 58, 524-8.	1.9	3
12	Occupational Exposure Assessment in Carbon Nanotube and Nanofiber Primary and Secondary Manufacturers: Mobile Direct-Reading Sampling. Annals of Occupational Hygiene, 2013, 57, 328-44.	1.9	71
13	Dustiness of Fine and Nanoscale Powders. Annals of Occupational Hygiene, 2013, 57, 261-77.	1.9	48
14	Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Particle and Fibre Toxicology, 2013, 10, 53.	6.2	136
15	Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect. Aerosol Science and Technology, 2012, 46, 473-484.	3.1	9
16	Occupational Exposure Assessment in Carbon Nanotube and Nanofiber Primary and Secondary Manufacturers. Annals of Occupational Hygiene, 2012, 56, 542-56.	1.9	86
17	Assessing the risk to firefighters from chemical vapors and gases during vehicle fire suppression. Journal of Environmental Monitoring, 2011, 13, 536.	2.1	39
18	A Strategy for Assessing Workplace Exposures to Nanomaterials. Journal of Occupational and Environmental Hygiene, 2011, 8, 673-685.	1.0	93

DOUGLAS E EVANS

#	Article	IF	CITATIONS
19	Exposure and Emissions Monitoring during Carbon Nanofiber Production—Part I: Elemental Carbon and Iron–Soot Aerosols. Annals of Occupational Hygiene, 2011, 55, 1016-36.	1.9	74
20	Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling. Annals of Occupational Hygiene, 2010, 54, 514-31.	1.9	89
21	Relationships Among Particle Number, Surface Area, and Respirable Mass Concentrations in Automotive Engine Manufacturing. Journal of Occupational and Environmental Hygiene, 2008, 6, 19-31.	1.0	73
22	Ultrafine and Respirable Particles in an Automotive Grey Iron Foundry. Annals of Occupational Hygiene, 2007, 52, 9-21.	1.9	85
23	Identification and Characterization of Potential Sources of Worker Exposure to Carbon Nanofibers During Polymer Composite Laboratory Operations. Journal of Occupational and Environmental Hygiene, 2007, 4, D125-D130.	1.0	114
24	Characterization and Mapping of Very Fine Particles in an Engine Machining and Assembly Facility. Journal of Occupational and Environmental Hygiene, 2007, 4, 341-351.	1.0	52
25	The Mapping of Fine and Ultrafine Particle Concentrations in an Engine Machining and Assembly Facility. Annals of Occupational Hygiene, 2005, 50, 249-57.	1.9	90
26	Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L698-L708.	2.9	1,144
27	Aspiration efficiency of a thin-walled probe at right angles to the wind. Journal of Aerosol Science, 2005, 36, 1144-1156.	3.8	6
28	The Generation and Characterization of Metallic and Mixed Element Aerosols for Human Challenge Studies. Aerosol Science and Technology, 2003, 37, 975-987.	3.1	27
29	New experimental methods for the development and evaluation of aerosol samplers. Journal of Environmental Monitoring, 2002, 4, 633-641.	2.1	12
30	Sources and concentration of nanoparticles (<10nm diameter) in the urban atmosphere. Atmospheric Environment, 2001, 35, 1193-1202.	4.1	252