Nino Russo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10695569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Scavenging Ability of Scutellarein against the OOH Radical in Water and Lipid-like Environments: A Theoretical Study. Antioxidants, 2022, 11, 224.	5.1	11
2	Antioxidant and copper-chelating power of new molecules suggested as multiple target agents against Alzheimer's disease. A theoretical comparative study. Physical Chemistry Chemical Physics, 2022, 24, 16353-16359.	2.8	13
3	Quantum Mechanical Predictions of the Antioxidant Capability of Moracin C Isomers. Frontiers in Chemistry, 2021, 9, 666647.	3.6	10
4	A Boron-Containing Compound Acting on Multiple Targets Against Alzheimer's Disease. Insights from Ab Initio and Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2021, 61, 3397-3410.	5.4	9
5	Antioxidants into Nopal (Opuntia ficus-indica), Important Inhibitors of Free Radicals' Formation. Antioxidants, 2021, 10, 2006.	5.1	4
6	Theoretical exploration of the photophysical properties of two-component Ru ^{II} –porphyrin dyes as promising assemblies for a combined antitumor effect. Dalton Transactions, 2020, 49, 12653-12661.	3.3	10
7	Chalcogen effects on the primary antioxidant activity of chrysin and quercetin. New Journal of Chemistry, 2020, 44, 9073-9082.	2.8	24
8	The Antioxidant Capability of Higenamine: Insights from Theory. Antioxidants, 2020, 9, 358.	5.1	16
9	Photophysical Exploration of Dual-Approach Ptll–BODIPY Conjugates: Theoretical Insights. Inorganic Chemistry, 2019, 58, 9882-9889.	4.0	19
10	Chemical Insights into the Antioxidant Mechanisms of Alkylseleno and Alkyltelluro Phenols: Periodic Relatives Behaving Differently. Chemistry - A European Journal, 2018, 24, 8686-8691.	3.3	15
11	Theoretical Insights into the Switching Off/On of ¹ O ₂ Photosensitization in Chemicontrolled Photodynamic Therapy. Chemistry - A European Journal, 2018, 24, 3512-3519.	3.3	14
12	Antioxidant Properties of the Vam3 Derivative of Resveratrol. Molecules, 2018, 23, 2446.	3.8	8
13	Antioxidant properties and free radical scavenging mechanisms of cyclocurcumin. New Journal of Chemistry, 2018, 42, 12698-12705.	2.8	23
14	Theoretical determination of the aquation reaction mechanism of cyclometalated benzimidazole Ru(II) and Ir(III) anticancer complexes. Inorganica Chimica Acta, 2018, 470, 325-330.	2.4	5
15	Synergistic Effects of Metals in a Promising Ru ^{II} â^Pt ^{II} Assembly for a Combined Anticancer Approach: Theoretical Exploration of the Photophysical Properties. Chemistry - A European Journal, 2016, 22, 9162-9168.	3.3	34
16	Investigation of the Inertness to Hydrolysis of Platinum(IV) Prodrugs. Inorganic Chemistry, 2016, 55, 1580-1586.	4.0	35
17	Food Antioxidants: Chemical Insights at the Molecular Level. Annual Review of Food Science and Technology, 2016, 7, 335-352.	9.9	294
18	Soybean aglycones antioxidant activity. A theoretical investigation. Computational and Theoretical Chemistry, 2016, 1077, 119-124.	2.5	15

#	Article	IF	CITATIONS
19	Antioxidant properties comparative study of natural hydroxycinnamic acids and structurally modified derivatives: Computational insights. Computational and Theoretical Chemistry, 2016, 1077, 39-47.	2.5	48
20	Understanding Zinc(II) Chelation with Quercetin and Luteolin: A Combined NMR and Theoretical Study. Journal of Physical Chemistry B, 2015, 119, 83-95.	2.6	68
21	Antioxidant properties of several coumarin–chalcone hybrids from theoretical insights. RSC Advances, 2015, 5, 565-575.	3.6	79
22	Insights into the coordination mode of quercetin with the Al(<scp>iii</scp>) ion from a combined experimental and theoretical study. Dalton Transactions, 2014, 43, 7269-7274.	3.3	35
23	Ab initio calculations on the ¹ O ₂ quenching mechanism by trans-resveratrol. Physical Chemistry Chemical Physics, 2014, 16, 12773-12781.	2.8	16
24	Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. Journal of Physical Chemistry B, 2014, 118, 10380-10389.	2.6	139
25	Density functional study of the antioxidant activity of some recently synthesized resveratrol analogues. Food Chemistry, 2013, 141, 2017-2024.	8.2	57
26	Density Functional Predictions of Antioxidant Activity and UV Spectral Features of Nasutin A, Isonasutin, Ellagic Acid, and One of Its Possible Derivatives. Journal of Agricultural and Food Chemistry, 2013, 61, 9650-9657.	5.2	44
27	A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment. Physical Chemistry Chemical Physics, 2013, 15, 4642.	2.8	210
28	Structural and binding properties of metal ion chelators relevant to Alzheimer's disease. A theoretical investigation. International Journal of Quantum Chemistry, 2012, 112, 2109-2114.	2.0	5
29	Antioxidant Activity of <i>trans</i> -Resveratrol toward Hydroxyl and Hydroperoxyl Radicals: A Quantum Chemical and Computational Kinetics Study. Journal of Organic Chemistry, 2012, 77, 3868-3877.	3.2	226
30	Theoretical investigation on DNA/RNA base pairs mediated by copper, silver, and gold cations. Dalton Transactions, 2012, 41, 1816-1823.	3.3	21
31	Hydrolysis mechanism of anticancer Pd(II) complexes with coumarin derivatives: a theoretical investigation. Structural Chemistry, 2012, 23, 831-839.	2.0	22
32	Methionineligand selectively promotes monofunctional adducts between trans-EE platinum anticancer drug and guanine DNA base. Chemical Communications, 2011, 47, 887-889.	4.1	27
33	Detailed Investigation of the OH Radical Quenching by Natural Antioxidant Caffeic Acid Studied by Quantum Mechanical Models. Journal of Chemical Theory and Computation, 2011, 7, 4218-4233.	5.3	100
34	Which One among the Pt-Containing Anticancer Drugs More Easily Forms Monoadducts with G and A DNA Bases? A Comparative Study among Oxaliplatin, Nedaplatin, and Carboplatin. Inorganic Chemistry, 2011, 50, 6965-6971.	4.0	54
35	Interaction of the Mn ²⁺ , Co ²⁺ , Ni ²⁺ , and Zn ²⁺ with prion protein HGGGW pentapeptide model. International Journal of Quantum Chemistry, 2011, 111, 1152-1162.	2.0	8
36	The molecular basis of working mechanism of natural polyphenolic antioxidants. Food Chemistry, 2011, 125, 288-306.	8.2	917

#	Article	IF	CITATIONS
37	On the interaction of rubidium and cesium monoâ€; strontium and barium biâ€cations with DNA and RNA bases. A theoretical study. International Journal of Quantum Chemistry, 2010, 110, 138-147.	2.0	14
38	The inactivation of lipid peroxide radical by quercetin. A theoretical insight. Physical Chemistry Chemical Physics, 2010, 12, 7662.	2.8	92
39	Site-Selective Methylation of <i>N</i> ^β -Nosyl Hydrazides of <i>N</i> -Nosyl Protected α-Amino Acids. Journal of Organic Chemistry, 2010, 75, 3381-3386.	3.2	6
40	Pyranoanthocyanins: A Theoretical Investigation on Their Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2010, 58, 8862-8871.	5.2	101
41	The Second-Generation Anticancer Drug Nedaplatin: A Theoretical Investigation on the Hydrolysis Mechanism. Journal of Physical Chemistry B, 2009, 113, 14473-14479.	2.6	98
42	Neutral and Acidic Hydrolysis Reactions of the Third Generation Anticancer Drug Oxaliplatin. Journal of Physical Chemistry B, 2009, 113, 831-838.	2.6	77
43	Bioactive fragments synergically involved in the design of new generation Pt(ii) and Pd(ii)-based anticancer compounds. Dalton Transactions, 2008, , 5897.	3.3	21
44	The Degradation Pathways in Chloride Medium of the Third Generation Anticancer Drug Oxaliplatin. Journal of Physical Chemistry B, 2008, 112, 10765-10768.	2.6	40
45	Theoretical and Experimental Investigation on the Oxidation of Gallic Acid by Sulfate Radical Anions. Journal of Physical Chemistry A, 2008, 112, 1188-1194.	2.5	82
46	A Comparative Study of the Antioxidant Power of Flavonoid Catechin and Its Planar Analogue. Journal of Agricultural and Food Chemistry, 2007, 55, 7944-7949.	5.2	47
47	On the Hydrolysis Mechanism of the Secondâ€Generation Anticancer Drug Carboplatin. Chemistry - A European Journal, 2007, 13, 10108-10116.	3.3	111
48	A theoretical study on tautomerization processes of dehydrated and monohydrated cytosine. Computational and Theoretical Chemistry, 2007, 811, 161-167.	1.5	29
49	Gas and Liquid Phase Acidity of Natural Antioxidants. Journal of Agricultural and Food Chemistry, 2006, 54, 3078-3085.	5.2	108
50	Structural and Electronic Characterization of the Complexes Obtained by the Interaction between Bare and Hydrated First-Row Transition-Metal Ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) and Glycine. Journal of Physical Chemistry B, 2006, 110, 24666-24673.	2.6	106
51	On the Interaction of Bare and Hydrated Aluminum Ion with Nucleic Acid Bases (U, T, C, A, G) and Monophosphate Nucleotides (UMP, dTMP, dCMP, dAMP, dGMP). Journal of Physical Chemistry B, 2006, 110, 8815-8824.	2.6	28
52	Iron Chelation by the Powerful Antioxidant Flavonoid Quercetin. Journal of Agricultural and Food Chemistry, 2006, 54, 6343-6351.	5.2	387
53	Structural and Electronic Characterization of Antioxidants from Marine Organisms. Theoretical Chemistry Accounts, 2006, 115, 361-369.	1.4	65
54	Antioxidant Properties of Phenolic Compounds:Â H-Atom versus Electron Transfer Mechanism. Journal of Physical Chemistry A, 2004, 108, 4916-4922.	2.5	553

#	Article	IF	CITATIONS
55	Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent. Theoretical Chemistry Accounts, 2004, 111, 210-216.	1.4	159
56	Structure, Conformation, and Electronic Properties of Apigenin, Luteolin, and Taxifolin Antioxidants. A First Principle Theoretical Study. Journal of Physical Chemistry A, 2004, 108, 92-96.	2.5	280
57	Gas-phase theoretical prediction of the metal affinity of copper(I) ion for DNA and RNA bases. Journal of Mass Spectrometry, 2003, 38, 265-270.	1.6	53
58	Interaction of Li+, Na+, and K+ with the Proline Amino Acid. Complexation Modes, Potential Energy Profiles, and Metal Ion Affinities. Journal of Physical Chemistry B, 2003, 107, 2588-2594.	2.6	103
59	Gas-Phase Absolute Ca2+and Mg2+Affinity for Nucleic Acid Bases. A Theoretical Determination. Journal of Physical Chemistry A, 2003, 107, 11533-11538.	2.5	67
60	Interaction of Cu+ and Cu2+ ions with ?-alanine. A density functional study. Journal of Mass Spectrometry, 2002, 37, 786-791.	1.6	38
61	On the interaction between manganese cation (Mn2+) and the nucleic acid bases (T, U, C, A, G) in the gas phase. International Journal of Quantum Chemistry, 2002, 90, 903-909.	2.0	33
62	Bond Energies and Attachments Sites of Sodium and Potassium Cations to DNA and RNA Nucleic Acid Bases in the Gas Phase. Journal of the American Chemical Society, 2001, 123, 10272-10279.	13.7	154
63	Lithium Affinity for DNA and RNA Nucleobases. The Role of Theoretical Information in the Elucidation of the Mass Spectrometry Data. Journal of Physical Chemistry B, 2001, 105, 4735-4741.	2.6	105
64	Semiempirical Molecular Modeling into Quercetin Reactive Site:Â Structural, Conformational, and Electronic Features. Journal of Agricultural and Food Chemistry, 2000, 48, 3232-3237.	5.2	128
65	Theoretical study of the interaction of alkali-metal atoms with CO2. Chemical Physics Letters, 1998, 295, 409-415.	2.6	9
66	Protonation of thymine, cytosine, adenine, and guanine DNA nucleic acid bases: Theoretical investigation into the framework of density functional theory. Journal of Computational Chemistry, 1998, 19, 989-1000.	3.3	127
67	Interaction of atomic hydrogen with cluster models of Pd, Rh and bimetallic PdSn and RhSn catalysts. Surface Science, 1990, 235, L319-L323.	1.9	7
68	Ground and excited states of group IVA diatomics from localâ€spinâ€density calculations: Model potentials for Si, Ge, and Sn. Journal of Chemical Physics, 1987, 87, 6562-6572.	3.0	120
69	Model Hamiltonians in the study of chemisorption and catalysis. Surface Science, 1985, 152-153, 690-701.	1.9	26