Yi Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10695428/publications.pdf

Version: 2024-02-01

39	4,142	22	34
papers	citations	h-index	g-index
40	40	40	1780
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Segmental contributions to cochlear implant speech perception. Speech Communication, 2019, 106, 79-84.	2.8	1
2	A Twoâ€Stage Nonlinear Shrinkage of the Sample Covariance Matrix for Robust Capon Beamforming. Chinese Journal of Electronics, 2019, 28, 962-967.	1.5	0
3	Formation of new stellar populations from gas accreted by massive young star clusters. Nature, 2016, 529, 502-504.	27.8	28
4	Evaluation of Noise Reduction Methods for Sentence Recognition by Mandarin-Speaking Cochlear Implant Listeners. Ear and Hearing, 2015, 36, 61-71.	2.1	33
5	Evaluation of a spectral subtraction strategy to suppress reverberant energy in cochlear implant devices. Journal of the Acoustical Society of America, 2015, 138, 115-124.	1.1	3
6	Contribution of low-frequency harmonics to Mandarin Chinese tone identification in quiet and six-talker babble background. Journal of the Acoustical Society of America, 2014, 135, 428-438.	1.1	11
7	Effects of early and late reflections on intelligibility of reverberated speech by cochlear implant listeners. Journal of the Acoustical Society of America, 2014, 135, EL22-EL28.	1.1	30
8	Effects of Lexical Tone Contour on Mandarin Sentence Intelligibility. Journal of Speech, Language, and Hearing Research, 2014, 57, 338-345.	1.6	56
9	A Hilbert-fine-structure-derived physical metric for predicting the intelligibility of noise-distorted and noise-suppressed speech. Speech Communication, 2013, 55, 1011-1020.	2.8	6
10	Modifying the normalized covariance metric measure to account for nonlinear distortions introduced by noise-reduction algorithms. Journal of the Acoustical Society of America, 2013, 133, EL405-EL411.	1.1	2
11	The Perception of Telephone-Processed Speech by Combined Electric and Acoustic Stimulation. Trends in Amplification, 2013, 17, 189-196.	2.4	5
12	The Contribution of Matched Envelope Dynamic Range to the Binaural Benefits in Simulated Bilateral Electric Hearing. Journal of Speech, Language, and Hearing Research, 2013, 56, 1166-1174.	1.6	9
13	GRAVITATIONAL CONUNDRUM? DYNAMICAL MASS SEGREGATION VERSUS DISRUPTION OF BINARY STARS IN DENSE STELLAR SYSTEMS. Astrophysical Journal, 2013, 765, 4.	4.5	25
14	Single and Multiple Microphone Noise Reduction Strategies in Cochlear Implants. Trends in Amplification, 2012, 16, 102-116.	2.4	44
15	Data Characterization Using Artificial-Star Tests: Performance Evaluation. Publications of the Astronomical Society of the Pacific, 2011, 123, 107-112.	3.1	4
16	Comparative intelligibility investigation of single-channel noise-reduction algorithms for Chinese, Japanese, and English. Journal of the Acoustical Society of America, 2011, 129, 3291-3301.	1.1	32
17	A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation. Journal of the Acoustical Society of America, 2010, 127, 3145-3153.	1.1	4
18	Effects of introducing low-frequency harmonics in the perception of vocoded telephone speech. Journal of the Acoustical Society of America, 2010, 128, 1280.	1.1	10

#	Article	IF	Citations
19	Environment-specific noise suppression for improved speech intelligibility by cochlear implant users. Journal of the Acoustical Society of America, 2010, 127, 3689-3695.	1.1	58
20	On the importance of preserving the harmonics and neighboring partials prior to vocoder processing: Implications for cochlear implants. Journal of the Acoustical Society of America, 2010, 127, 427-434.	1.1	15
21	Speech recognition by bilateral cochlear implant users in a cocktail-party setting. Journal of the Acoustical Society of America, 2009, 125, 372-383.	1.1	142
22	Objective measures for predicting speech intelligibility in noisy conditions based on new band-importance functions. Journal of the Acoustical Society of America, 2009, 125, 3387-3405.	1.1	350
23	On the use of Bayesian modeling for predicting noise reduction performance. , 2009, , .		4
24	An algorithm that improves speech intelligibility in noise for normal-hearing listeners. Journal of the Acoustical Society of America, 2009, 126, 1486-1494.	1.1	271
25	Evaluation of Objective Quality Measures for Speech Enhancement. IEEE Transactions on Audio Speech and Language Processing, 2008, 16, 229-238.	3.2	1,280
26	A new sound coding strategy for suppressing noise in cochlear implants. Journal of the Acoustical Society of America, 2008, 124, 498-509.	1.1	57
27	A Comparative Intelligibility Study of Speech Enhancement Algorithms. , 2007, , .		24
28	A comparative intelligibility study of single-microphone noise reduction algorithms. Journal of the Acoustical Society of America, 2007, 122, 1777-1786.	1.1	191
29	Use of a sigmoidal-shaped function for noise attenuation in cochlear implants. Journal of the Acoustical Society of America, 2007, 122, EL128-EL134.	1.1	52
30	Subjective comparison and evaluation of speech enhancement algorithms. Speech Communication, 2007, 49, 588-601.	2.8	553
31	Subspace algorithms for noise reduction in cochlear implants. Journal of the Acoustical Society of America, 2005, 118, 2791-2793.	1.1	68
32	Incorporating a Psychoacoustical Model in Frequency Domain Speech Enhancement. IEEE Signal Processing Letters, 2004, 11, 270-273.	3.6	76
33	Speech Enhancement Based onWavelet Thresholding the Multitaper Spectrum. IEEE Transactions on Speech and Audio Processing, 2004, 12, 59-67.	1.5	179
34	A generalized subspace approach for enhancing speech corrupted by colored noise. IEEE Transactions on Speech and Audio Processing, 2003, 11, 334-341.	1.5	310
35	A perceptually motivated approach for speech enhancement. IEEE Transactions on Speech and Audio Processing, 2003, 11, 457-465.	1.5	78
36	A subspace approach for enhancing speech corrupted by colored noise., 2002,,.		31

#	Article	IF	CITATIONS
37	A subspace approach for enhancing speech corrupted by colored noise. IEEE Signal Processing Letters, 2002, 9, 204-206.	3.6	63
38	A cross-correlation technique for enhancing speech corrupted with correlated noise. , 0, , .		7
39	A noise estimation algorithm with rapid adaptation for highly nonstationary environments. , 0, , .		28