Eui Dae Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10695424/publications.pdf Version: 2024-02-01

FUL DAE LUNC

#	Article	IF	CITATIONS
1	Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic–Inorganic Perovskites in Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 1784-1792.	4.6	220
2	Highâ€Performance Planar Perovskite Optoelectronic Devices: A Morphological and Interfacial Control by Polar Solvent Treatment. Advanced Materials, 2015, 27, 3492-3500.	21.0	205
3	High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale, 2016, 8, 7036-7042.	5.6	170
4	Amineâ€Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells. Advanced Materials, 2014, 26, 494-500.	21.0	159
5	Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 2018, 8, 1070.	3.3	144
6	Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nature Communications, 2014, 5, 4840.	12.8	138
7	Highly Efficient and Stable Inverted Perovskite Solar Cell Obtained via Treatment by Semiconducting Chemical Additive. Advanced Materials, 2019, 31, e1805554.	21.0	134
8	Improving the Stability and Performance of Perovskite Lightâ€Emitting Diodes by Thermal Annealing Treatment. Advanced Materials, 2016, 28, 6906-6913.	21.0	111
9	Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 3417-3423.	14.6	109
10	Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells. Nano Energy, 2019, 60, 213-221.	16.0	79
11	Amineâ€Based Interfacial Molecules for Inverted Polymerâ€Based Optoelectronic Devices. Advanced Materials, 2015, 27, 3553-3559.	21.0	77
12	Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO ₃ composite layer. Journal of Materials Chemistry C, 2016, 4, 8161-8165.	5.5	75
13	Effect of the solvent used for fabrication of perovskite films by solvent dropping on performance of perovskite light-emitting diodes. Nanoscale, 2017, 9, 2088-2094.	5.6	61
14	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	14.6	56
15	Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy, 2021, 80, 105511.	16.0	54
16	Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells. Advanced Materials, 2020, 32, e2002333.	21.0	48
17	Enhancing the Performance and Stability of Perovskite Nanocrystal Lightâ€Emitting Diodes with a Polymer Matrix. Advanced Materials Technologies, 2017, 2, 1700003.	5.8	44
18	Nanomechanical Approach for Flexibility of Organic–Inorganic Hybrid Perovskite Solar Cells. Nano Letters, 2019, 19, 3707-3715.	9.1	42

Eui Dae Jung

#	Article	IF	CITATIONS
19	Improved Efficiency of Perovskite Solar Cells Using a Nitrogen-Doped Graphene-Oxide-Treated Tin Oxide Layer. ACS Applied Materials & Interfaces, 2020, 12, 2417-2423.	8.0	40
20	Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode. Electronic Materials Letters, 2015, 11, 906-914.	2.2	38
21	Sky-Blue-Emissive Perovskite Light-Emitting Diodes: Crystal Growth and Interfacial Control Using Conjugated Polyelectrolytes as a Hole-Transporting Layer. ACS Nano, 2020, 14, 13246-13255.	14.6	38
22	Strategy for <scp>largeâ€scale</scp> monolithic <scp>Perovskite</scp> /Silicon tandem solar cell: A review of recent progress. EcoMat, 2021, 3, e12084.	11.9	38
23	Flexibility of Semitransparent Perovskite Light-Emitting Diodes Investigated by Tensile Properties of the Perovskite Layer. Nano Letters, 2019, 19, 971-976.	9.1	37
24	Highly Efficient Flexible Perovskite Light-Emitting Diodes Using the Modified PEDOT:PSS Hole Transport Layer and Polymer–Silver Nanowire Composite Electrode. ACS Applied Materials & Interfaces, 2019, 11, 39274-39282.	8.0	24
25	Solution processable small molecules as efficient electron transport layers in organic optoelectronic devices. Journal of Materials Chemistry A, 2020, 8, 13501-13508.	10.3	19
26	Ultrathin Graphene Intercalation in PEDOT:PSS/Colorless Polyimide-Based Transparent Electrodes for Enhancement of Optoelectronic Performance and Operational Stability of Organic Devices. ACS Applied Materials & Interfaces, 2019, 11, 21069-21077.	8.0	18
27	<i>In situ</i> cadmium surface passivation of perovskite nanocrystals for blue LEDs. Journal of Materials Chemistry A, 2021, 9, 26750-26757.	10.3	18
28	A polymer/small-molecule binary-blend hole transport layer for enhancing charge balance in blue perovskite light emitting diodes. Journal of Materials Chemistry A, 2022, 10, 13928-13935.	10.3	15
29	Conjugated Polyelectrolytes Bearing Various Ion Densities: Spontaneous Dipole Generation, Polingâ€Induced Dipole Alignment, and Interfacial Energy Barrier Control for Optoelectronic Device Applications. Advanced Materials, 2018, 30, e1706034.	21.0	12
30	Water-stable polymer hole transport layer in organic and perovskite light-emitting diodes. Journal of Power Sources, 2020, 478, 228810.	7.8	6
31	Cs incorporation via sequential deposition for stable and scalable organometal halide perovskite solar cells. Journal of Power Sources, 2022, 520, 230783.	7.8	6
32	Triphenylamineâ€Based Conjugated Polyelectrolyte as a Hole Transport Layer for Efficient and Scalable Perovskite Solar Cells. Small, 2022, 18, e2104933.	10.0	6
33	A-Site Cation Engineering for Efficient Blue-Emissive Perovskite Light-Emitting Diodes. Energies, 2020, 13, 6689.	3.1	5
34	Micro-Segregated Liquid Crystal Haze Films for Photovoltaic Applications: A Novel Strategy to Fabricate Haze Films Employing Liquid Crystal Technology. Materials, 2018, 11, 2188.	2.9	4