
## Maciej Zajac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10694158/publications.pdf Version: 2024-02-01



ΜΛΟΙΕΙ ΖΛΙΛΟ

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydration kinetics of ternary slag-limestone cements: Impact of water to binder ratio and curing temperature. Cement and Concrete Research, 2022, 151, 106647.                                | 11.0 | 55        |
| 2  | Mechanisms of carbonation hydration hardening in Portland cements. Cement and Concrete Research, 2022, 152, 106687.                                                                           | 11.0 | 75        |
| 3  | Effect of sulfate on CO2 binding efficiency of recycled alkaline materials. Cement and Concrete<br>Research, 2022, 157, 106804.                                                               | 11.0 | 16        |
| 4  | CO2 Mineralization Methods in Cement and Concrete Industry. Energies, 2022, 15, 3597.                                                                                                         | 3.1  | 26        |
| 5  | Application of the Rietveld-PONKCS Technique for Quantitative Analysis of Cements and Pitfalls of Hydration Stopping Methods. Advances in Civil Engineering Materials, 2022, 11, 555-568.     | 0.6  | 1         |
| 6  | Effect of alkali and sulfate on early hydration of Portland cements at high water to cement ratio.<br>Construction and Building Materials, 2022, 345, 128283.                                 | 7.2  | 15        |
| 7  | Semi-dry carbonation of recycled concrete paste. Journal of CO2 Utilization, 2022, 63, 102111.                                                                                                | 6.8  | 28        |
| 8  | Effect of alkalis on enforced carbonation of cement paste: Mechanism of reaction. Journal of the<br>American Ceramic Society, 2021, 104, 1076-1087.                                           | 3.8  | 15        |
| 9  | Modelling the effect of the cement components fineness on performance and environmental impact of composite cements. Construction and Building Materials, 2021, 276, 122108.                  | 7.2  | 10        |
| 10 | Effect of alkalis on products of enforced carbonation of cement paste. Construction and Building Materials, 2021, 291, 123203.                                                                | 7.2  | 27        |
| 11 | New insights into the role of space on the microstructure and the development of strength of multicomponent cements. Cement and Concrete Composites, 2021, 121, 104070.                       | 10.7 | 11        |
| 12 | Understanding of the factors slowing down metakaolin reaction in limestone calcined clay cement (LC3) at late ages. Cement and Concrete Research, 2021, 146, 106477.                          | 11.0 | 49        |
| 13 | Impact of limestone fineness on cement hydration at early age. Cement and Concrete Research, 2021, 147, 106515.                                                                               | 11.0 | 69        |
| 14 | Factors affecting the reactivity of slag at early and late ages. Cement and Concrete Research, 2021, 150, 106604.                                                                             | 11.0 | 20        |
| 15 | Combined influence of carbonation and leaching on freeze-thaw resistance of limestone ternary cement concrete. Construction and Building Materials, 2021, 307, 125087.                        | 7.2  | 11        |
| 16 | Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1. | 3.1  | 123       |
| 17 | Effect of carbonated cement paste on composite cement hydration and performance. Cement and<br>Concrete Research, 2020, 134, 106090.                                                          | 11.0 | 111       |
| 18 | Kinetics of enforced carbonation of cement paste. Cement and Concrete Research, 2020, 131, 106013.                                                                                            | 11.0 | 93        |

Maciej Zajac

| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | CO2 mineralisation of Portland cement: Towards understanding the mechanisms of enforced carbonation. Journal of CO2 Utilization, 2020, 38, 398-415.                                                                         | 6.8  | 69        |
| 20 | Phase assemblage and microstructure of cement paste subjected to enforced, wet carbonation.<br>Cement and Concrete Research, 2020, 130, 105990.                                                                             | 11.0 | 109       |
| 21 | Late hydration kinetics: Indications from thermodynamic analysis of pore solution data. Cement and<br>Concrete Research, 2020, 129, 105975.                                                                                 | 11.0 | 53        |
| 22 | Carbon Capture and Utilization by mineralization of cement pastes derived from recycled concrete.<br>Scientific Reports, 2020, 10, 5614.                                                                                    | 3.3  | 104       |
| 23 | Application of thermodynamic modelling to hydrated cements. Cement and Concrete Research, 2019, 123, 105779.                                                                                                                | 11.0 | 123       |
| 24 | Structure and reactivity of synthetic CaO-Al2O3-SiO2 glasses. Cement and Concrete Research, 2019, 120, 77-91.                                                                                                               | 11.0 | 90        |
| 25 | Early hydration of ye'elimite: Insights from thermodynamic modelling. Cement and Concrete Research, 2019, 120, 152-163.                                                                                                     | 11.0 | 26        |
| 26 | Development of composite cements characterized by low environmental footprint. Journal of Cleaner<br>Production, 2019, 226, 503-514.                                                                                        | 9.3  | 45        |
| 27 | Hydration and performance evolution of belite–ye'elimite–ferrite cement. Advances in Cement<br>Research, 2019, 31, 124-137.                                                                                                 | 1.6  | 30        |
| 28 | Hydration reactions and stages of clinker composed mainly of stoichiometric ye'elimite. Cement and Concrete Research, 2019, 116, 120-133.                                                                                   | 11.0 | 65        |
| 29 | Factors influencing the hydration kinetics of ye'elimite; effect of mayenite. Cement and Concrete Research, 2019, 116, 113-119.                                                                                             | 11.0 | 40        |
| 30 | Stability of the hydrate phase assemblage in Portland composite cements containing dolomite and<br>metakaolin after leaching, carbonation, and chloride exposure. Cement and Concrete Composites,<br>2018, 89, 89-106.      | 10.7 | 57        |
| 31 | Effect of sulfate additions on hydration and performance of ternary slag-limestone composite cements. Construction and Building Materials, 2018, 164, 451-462.                                                              | 7.2  | 66        |
| 32 | Influence of calcium and magnesium carbonates on hydration kinetics, hydrate assemblage and<br>microstructural development of metakaolin containing composite cements. Cement and Concrete<br>Research, 2018, 106, 91-102.  | 11.0 | 69        |
| 33 | The effect of CaO/SiO 2 molar ratio of CaO-Al 2 O 3 -SiO 2 glasses on their structure and reactivity in alkali activated system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 163-171. | 3.9  | 68        |
| 34 | Relationship between cement composition and the freeze–thaw resistance of concretes. Advances in<br>Cement Research, 2018, 30, 387-397.                                                                                     | 1.6  | 9         |
| 35 | Limitations of the hydrotalcite formation in Portland composite cement pastes containing dolomite and metakaolin. Cement and Concrete Research, 2018, 105, 1-17.                                                            | 11.0 | 94        |
| 36 | Impact of microstructure on the performance of composite cements: Why higher total porosity can result in higher strength. Cement and Concrete Composites, 2018, 90, 178-192.                                               | 10.7 | 69        |

Maciej Zajac

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin.<br>Cement and Concrete Research, 2018, 107, 163-181.                                                        | 11.0 | 108       |
| 38 | Effect of sulfate content on the porosity distribution and resulting performance of composite cements. Construction and Building Materials, 2018, 186, 912-919.                                            | 7.2  | 24        |
| 39 | Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study.<br>Cement and Concrete Research, 2017, 93, 71-82.                                                       | 11.0 | 145       |
| 40 | Outcomes of the RILEM round robin on degree of reaction of slag and fly ash in blended cements.<br>Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.                                       | 3.1  | 101       |
| 41 | Influence of limestone on the hydration of ternary slag cements. Cement and Concrete Research, 2017, 100, 96-109.                                                                                          | 11.0 | 222       |
| 42 | Phase assemblage of composite cements. Cement and Concrete Research, 2017, 99, 172-182.                                                                                                                    | 11.0 | 95        |
| 43 | Predictive modelling of hydration and mechanical performance of low Ca composite cements:<br>Possibilities and limitations from industrial perspective. Cement and Concrete Research, 2017, 100,<br>68-83. | 11.0 | 35        |
| 44 | Portland metakaolin cement containing dolomite or limestone – Similarities and differences in phase assemblage and compressive strength. Construction and Building Materials, 2017, 157, 214-225.          | 7.2  | 52        |
| 45 | Effect of Slag Reactivity Influenced by Alumina Content on Hydration of Composite Cements. Journal of Advanced Concrete Technology, 2016, 14, 535-547.                                                     | 1.8  | 20        |
| 46 | Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements. Cement and Concrete Research, 2016, 84, 62-75.                                                                  | 11.0 | 130       |
| 47 | The impact of alumina availability on sulfate resistance of slag composite cements. Construction and<br>Building Materials, 2016, 119, 356-369.                                                            | 7.2  | 51        |
| 48 | The Influence of Limestone and Al2O3 Content in the Slag on the Performance of the Composite Cements. Procedia Engineering, 2015, 108, 402-409.                                                            | 1.2  | 19        |
| 49 | CSA raw mix design: effect on clinker formation and reactivity. Materials and Structures/Materiaux Et<br>Constructions, 2015, 48, 3895-3911.                                                               | 3.1  | 61        |
| 50 | Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cement and Concrete Composites, 2015, 55, 374-382.                                   | 10.7 | 278       |
| 51 | Experimental investigation and modeling of hydration and performance evolution of fly ash cement.<br>Materials and Structures/Materiaux Et Constructions, 2014, 47, 1259-1269.                             | 3.1  | 36        |
| 52 | The role of the alumina content of slag, plus the presence of additional sulfate on the hydration and microstructure of Portland cement-slag blends. Cement and Concrete Research, 2014, 66, 91-101.       | 11.0 | 135       |
| 53 | Effect of CaMg(CO3)2 on hydrate assemblages and mechanical properties of hydrated cement pastes at 40°C and 60°C. Cement and Concrete Research, 2014, 65, 21-29.                                           | 11.0 | 66        |
| 54 | Influence of limestone and anhydrite on the hydration of Portland cements. Cement and Concrete<br>Composites, 2014, 46, 99-108.                                                                            | 10.7 | 289       |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | CO2 mineralization of demolished concrete wastes into a supplementary cementitious material $\hat{a} \in$ " a new CCU approach for the cement industry. RILEM Technical Letters, 0, 6, 53-60. | 0.0 | 37        |