Guozheng Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10693028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	14.1% CsPbl ₃ Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation. Advanced Energy Materials, 2019, 9, 1900721.	19.5	254
2	Highâ€Efficiency PbS Quantumâ€Dot Solar Cells with Greatly Simplified Fabrication Processing via "Solventâ€Curingâ€: Advanced Materials, 2018, 30, e1707572.	21.0	139
3	In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering. Advanced Materials, 2018, 30, e1704871.	21.0	125
4	Room-Temperature Processed Nb ₂ O ₅ as the Electron-Transporting Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 23181-23188.	8.0	120
5	Improved Allâ€Polymer Solar Cell Performance by Using Matched Polymer Acceptor. Advanced Functional Materials, 2016, 26, 5669-5678.	14.9	107
6	Efficient PbS quantum dot solar cells employing a conventional structure. Journal of Materials Chemistry A, 2017, 5, 23960-23966.	10.3	104
7	Tuning the Surface-Passivating Ligand Anchoring Position Enables Phase Robustness in CsPbl ₃ Perovskite Quantum Dot Solar Cells. ACS Energy Letters, 2020, 5, 3322-3329.	17.4	89
8	Engineering the morphology <i>via</i> processing additives in multiple all-polymer solar cells for improved performance. Journal of Materials Chemistry A, 2018, 6, 10421-10432.	10.3	65
9	High efficiency all-polymer tandem solar cells. Scientific Reports, 2016, 6, 26459.	3.3	57
10	Broadband Enhancement of PbS Quantum Dot Solar Cells by the Synergistic Effect of Plasmonic Gold Nanobipyramids and Nanospheres. Advanced Energy Materials, 2018, 8, 1701194.	19.5	56
11	Stable and Highly Efficient PbS Quantum Dot Tandem Solar Cells Employing a Rationally Designed Recombination Layer. Advanced Energy Materials, 2017, 7, 1602667.	19.5	55
12	The effect of water on colloidal quantum dot solar cells. Nature Communications, 2021, 12, 4381.	12.8	44
13	Photovoltaic Devices Based on Colloidal PbX Quantum Dots: Progress and Prospects. Solar Rrl, 2017, 1, 1600021.	5.8	39
14	PbSe Quantum Dot Solar Cells Based on Directly Synthesized Semiconductive Inks. ACS Energy Letters, 2020, 5, 3797-3803.	17.4	34
15	Finely Interpenetrating Bulk Heterojunction Structure for Lead Sulfide Colloidal Quantum Dot Solar Cells by Convective Assembly. ACS Energy Letters, 2019, 4, 960-967.	17.4	30
16	Toward printable solar cells based on PbX colloidal quantum dot inks. Nanoscale Horizons, 2021, 6, 8-23.	8.0	29
17	Matrix Manipulation of Directlyâ€Synthesized PbS Quantum Dot Inks Enabled by Coordination Engineering. Advanced Functional Materials, 2021, 31, 2104457.	14.9	24
18	The Impact of Precursor Ratio on the Synthetic Production, Surface Chemistry, and Photovoltaic Performance of CsPbI ₃ Perovskite Quantum Dots. Solar Rrl, 2021, 5, 2100090.	5.8	17

GUOZHENG SHI

#	Article	IF	CITATIONS
19	Magnetron Sputtered SnO ₂ Constituting Double Electron Transport Layers for Efficient PbS Quantum Dot Solar Cells. Solar Rrl, 2020, 4, 2000218.	5.8	12
20	Packing State Management to Realize Dense and Semiconducting Lead Sulfide Nanocrystals Film via a Single-Step Deposition. Cell Reports Physical Science, 2020, 1, 100183.	5.6	11
21	Perovskite bridging PbS quantum dot/polymer interface enables efficient solar cells. Nano Research, 2022, 15, 6121-6127.	10.4	11