John Coggan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1069227/publications.pdf

Version: 2024-02-01

567281 752698 21 648 15 20 citations h-index g-index papers 22 22 22 805 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modelling discontinuity control on the development of Hell's Mouth landslide. Landslides, 2022, 19, 277-295.	5.4	6
2	A machine learning approach for the detection of supporting rock bolts from laser scan data in an underground mine. Tunnelling and Underground Space Technology, 2021, 107, 103656.	6.2	22
3	Maximizing Impacts of Remote Sensing Surveys in Slope Stability—A Novel Method to Incorporate Discontinuities into Machine Learning Landslide Prediction. ISPRS International Journal of Geo-Information, 2021, 10, 232.	2.9	10
4	A Sentinel-2 based multispectral convolutional neural network for detecting artisanal small-scale mining in Ghana: Applying deep learning to shallow mining. Remote Sensing of Environment, 2020, 248, 111970.	11.0	36
5	Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations. Remote Sensing, 2020, 12, 2053.	4.0	29
6	Ultrasonic inspection of flooded mineshafts for stability monitoring. Mining Technology: Transactions of the Institute of Mining and Metallurgy, 2019, 128, 177-185.	0.5	0
7	A Multi-Disciplinary Approach to the Study of Large Rock Avalanches Combining Remote Sensing, GIS and Field Surveys: The Case of the Scanno Landslide, Italy. Remote Sensing, 2019, 11, 1570.	4.0	20
8	Bringing Lunar LiDAR Back Down to Earth: Mapping Our Industrial Heritage through Deep Transfer Learning. Remote Sensing, 2019, 11, 1994.	4.0	37
9	Application of Remote Sensing Data for Evaluation of Rockfall Potential within a Quarry Slope. ISPRS International Journal of Geo-Information, 2019, 8, 367.	2.9	22
10	A combined field/remote sensing approach for characterizing landslide risk in coastal areas. International Journal of Applied Earth Observation and Geoinformation, 2018, 67, 79-95.	2.8	20
11	Improvements in the integration of remote sensing and rock slope modelling. Natural Hazards, 2018, 90, 975-1004.	3.4	48
12	Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy). Natural Hazards and Earth System Sciences, 2018, 18, 287-302.	3.6	34
13	Integration of Laser Scanning and Three-dimensional Models in the Legal Process Following an Industrial Accident. Safety and Health at Work, 2017, 8, 306-314.	0.6	4
14	Geotechnical and mineralogical characterisations of marine-dredged sediments before and after stabilisation to optimise their use as a road material. Environmental Technology (United Kingdom), 2017, 38, 3034-3046.	2.2	8
15	The Use of Remote Sensing Techniques for Monitoring and Characterization of Slope Instability. Procedia Engineering, 2017, 191, 150-157.	1.2	27
16	Trace element mobility in a polluted marine sediment after stabilisation with hydraulic binders. Marine Pollution Bulletin, 2016, 110, 401-408.	5.0	14
17	Petrographic features as an effective indicator for the variation in strength of granites. Engineering Geology, 2016, 202, 44-54.	6.3	7 5
18	A Combined Remote Sensing–Numerical Modelling Approach to the Stability Analysis of Delabole Slate Quarry, Cornwall, UK. Rock Mechanics and Rock Engineering, 2016, 49, 1227-1245.	5.4	32

#	Article	IF	CITATION
19	Comparison of three procedures (single, sequential and kinetic extractions) for mobility assessment of Cu, Pb and Zn in harbour sediments. Comptes Rendus - Geoscience, 2015, 347, 94-102.	1.2	15
20	Characterization of harbor sediments from the English Channel: assessment of heavy metal enrichment, biological effect and mobility. Marine Pollution Bulletin, 2015, 90, 273-280.	5.0	45
21	Evaluation of coal longwall caving characteristics using an innovative UDEC Trigon approach. Computers and Geotechnics, 2014, 55, 448-460.	4.7	144