Patrice Tankam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10691778/publications.pdf

Version: 2024-02-01

687363 677142 29 723 13 22 h-index citations g-index papers 29 29 29 450 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Digital three-color holographic interferometry for flow analysis. Optics Express, 2008, 16, 5471.	3.4	115
2	Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification. Optics Letters, 2009, 34, 572.	3.3	78
3	MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy. Optics Express, 2016, 24, 13365.	3.4	77
4	Optimization of galvanometer scanning for optical coherence tomography. Applied Optics, 2015, 54, 5495.	2.1	65
5	Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry. Optics Letters, 2010, 35, 2055.	3.3	62
6	Spatial bandwidth extended reconstruction for digital color Fresnel holograms. Optics Express, 2009, 17, 9145.	3.4	56
7	Digital color holography applied to fluid and structural mechanics. Optics and Lasers in Engineering, 2012, 50, 18-28.	3.8	40
8	Method of digital holographic recording and reconstruction using a stacked color image sensor. Applied Optics, 2010, 49, 320.	2.1	35
9	Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography. Applied Optics, 2013, 52, A240.	1.8	32
10	Measurement of a multi-layered tear film phantom using optical coherence tomography and statistical decision theory. Biomedical Optics Express, 2014, 5, 4374.	2.9	30
11	Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases. Optics Letters, 2015, 40, 1113.	3.3	29
12	Parallelized multi–graphics processing unit framework for high-speed Gabor-domain optical coherence microscopy. Journal of Biomedical Optics, 2014, 19, 071410.	2.6	23
13	Digital holographic reconstruction of a local object field using an adjustable magnification. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1291.	1.5	22
14	Experimental and theoretical investigation of the pixel saturation effect in digital holography. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1262.	1.5	14
15	Optical Assessment of Soft Contact Lens Edge-Thickness. Optometry and Vision Science, 2016, 93, 987-996.	1.2	11
16	Gabor-domain optical coherence tomography to aid in Mohs resection of basal cell carcinoma. Journal of the American Academy of Dermatology, 2019, 80, 1766-1769.	1.2	11
17	Capabilities of Gabor-domain optical coherence microscopy for the assessment of corneal disease. Journal of Biomedical Optics, 2019, 24, 1.	2.6	8
18	Design of the spatial filter window for digital holographic convolution reconstruction of object beam field. Optics Communications, 2010, 283, 4166-4170.	2.1	4

#	Article	lF	CITATIONS
19	Development of high-speed, integrated high-resolution optical coherence microscopy and dual-channel fluorescence microscopy for the simultaneous co-registration of reflectance and fluorescence signals. Optics and Lasers in Engineering, 2022, 149, 106823.	3.8	4
20	Quantitative assessment of human donor corneal endothelium with Gabor domain optical coherence microscopy. Journal of Biomedical Optics, 2019, 24, 1.	2.6	4
21	Gabor-domain optical coherence microscopy with integrated dual-axis MEMS scanner for fast 3D imaging and metrology. Proceedings of SPIE, 2015, , .	0.8	2
22	Research on the recording hologram with Foveon in digital color holography. Proceedings of SPIE, 2010, , .	0.8	1
23	Real-Time 3D Sensing Using a Stacked Color Image Sensor. , 2011, , .		0
24	Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation. , 2015, , .		0
25	3D wide field-of-view Gabor-domain optical coherence microscopy advancing real-time in-vivo imaging and metrology. Proceedings of SPIE, 2017, , .	0.8	O
26	Some Opportunities for Digital Color Holography Using a Stack of Photodiodes. , 2010, , .		0
27	Near wake flow of cylinder analyzed by digital three-wavelength holographic interferometry. , 2011, , .		O
28	Investigating Corneal Disease Using High Resolution Gabor-domain Optical Coherence Microscopy. , 2016, , .		0
29	Cellular assessment of the cornea of transgenic mice models using multi-modal optical coherence microscopy and dual-channel fluorescence microscopy., 2022,,.		O