List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10691076/publications.pdf Version: 2024-02-01

220 papers	21,578 citations	10956 71 h-index	9839 141 g-index
221	221	221	13930
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clinical Infectious Diseases, 2011, 52, e18-e55.	2.9	2,673
2	Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications. Circulation, 2015, 132, 1435-1486.	1.6	2,218
3	Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children: Executive Summary. Clinical Infectious Diseases, 2011, 52, 285-292.	2.9	1,448
4	Vancomycin Therapeutic Guidelines: A Summary of Consensus Recommendations from the Infectious Diseases Society of America, the American Society of Health-System Pharmacists, and the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases, 2009, 49, 325-327.	2.9	702
5	Therapeutic monitoring of vancomycin for serious methicillin-resistant <i>Staphylococcus aureus</i> infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. American Journal of	0.5	640
6	Health System Pharmacy, 2020, 77, 835-864. The Pharmacokinetic and Pharmacodynamic Properties of Vancomycin. Clinical Infectious Diseases, 2006, 42, S35-S39.	2.9	610
7	Outcomes Analysis of Delayed Antibiotic Treatment for Hospital-Acquired Staphylococcus aureus Bacteremia. Clinical Infectious Diseases, 2003, 36, 1418-1423.	2.9	546
8	Impact of Vancomycin Exposure on Outcomes in Patients With Methicillin-Resistant Staphylococcus aureus Bacteremia: Support for Consensus Guidelines Suggested Targets. Clinical Infectious Diseases, 2011, 52, 975-981.	2.9	411
9	Prospective Evaluation of the Effect of an Aminoglycoside Dosing Regimen on Rates of Observed Nephrotoxicity and Ototoxicity. Antimicrobial Agents and Chemotherapy, 1999, 43, 1549-1555.	1.4	382
10	Nephrotoxicity of vancomycin, alone and with an aminoglycoside. Journal of Antimicrobial Chemotherapy, 1990, 25, 679-687.	1.3	374
11	In Vitro Activities of Daptomycin, Vancomycin, Linezolid, and Quinupristin-Dalfopristin against Staphylococci and Enterococci, Including Vancomycin- Intermediate and -Resistant Strains. Antimicrobial Agents and Chemotherapy, 2000, 44, 1062-1066.	1.4	321
12	Impact of High-Inoculum Staphylococcus aureus on the Activities of Nafcillin, Vancomycin, Linezolid, and Daptomycin, Alone and in Combination with Gentamicin, in an In Vitro Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2004, 48, 4665-4672.	1.4	270
13	Therapeutic Monitoring of Vancomycin in Adults. Pharmacotherapy, 2009, 29, 1275-1279.	1.2	253
14	Pharmacodynamics of cefepime in patients with Gram-negative infections. Journal of Antimicrobial Chemotherapy, 2002, 50, 425-428.	1.3	228
15	Ceragenins: Cholic Acid-Based Mimics of Antimicrobial Peptides. Accounts of Chemical Research, 2008, 41, 1233-1240.	7.6	182
16	Bactericidal Activities of Two Daptomycin Regimens against Clinical Strains of Glycopeptide Intermediate-Resistant Staphylococcus aureus , Vancomycin-Resistant Enterococcus faecium , and Methicillin-Resistant Staphylococcus aureus Isolates in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2001, 45, 454-459.	1.4	178
17	A Quasi-Experiment To Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	178
18	The Importance of Bactericidal Drugs: Future Directions in Infectious Disease. Clinical Infectious Diseases, 2004, 39, 1314-1320.	2.9	175

#	Article	IF	CITATIONS
19	Early Use of Daptomycin Versus Vancomycin for Methicillin-Resistant Staphylococcus aureus Bacteremia With Vancomycin Minimum Inhibitory Concentration >1 mg/L: A Matched Cohort Study. Clinical Infectious Diseases, 2013, 56, 1562-1569.	2.9	163
20	Antimicrobial Salvage Therapy for Persistent Staphylococcal Bacteremia Using Daptomycin Plus Ceftaroline. Clinical Therapeutics, 2014, 36, 1317-1333.	1.1	151
21	Risk of Acute Kidney Injury in Patients on Concomitant Vancomycin and Piperacillin–Tazobactam Compared to Those on Vancomycin and Cefepime. Clinical Infectious Diseases, 2017, 64, 116-123.	2.9	151
22	A Review of Combination Antimicrobial Therapy for Enterococcus faecalis Bloodstream Infections and Infective Endocarditis. Clinical Infectious Diseases, 2018, 67, 303-309.	2.9	150
23	Clinical Outcomes for Patients with Bacteremia Caused by Vancomycinâ€Resistant Enterococcus in a Level 1 Trauma Center. Clinical Infectious Diseases, 2002, 34, 922-929.	2.9	142
24	Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clinical Infectious Diseases, 2020, 71, 1361-1364.	2.9	142
25	Comparative In Vitro Activities and Postantibiotic Effects of the Oxazolidinone Compounds Eperezolid (PNU-100592) and Linezolid (PNU-100766) versus Vancomycin against <i>Staphylococcus aureus</i> , Coagulase-Negative Staphylococci, <i>Enterococcus faecalis</i> , and <i>Enterococcus faecium</i> . Antimicrobial Agents and Chemotherapy, 1998, 42, 721-724.	1.4	132
26	Characterization of Vancomycin-Heteroresistant <i>Staphylococcus aureus</i> from the Metropolitan Area of Detroit, Michigan, over a 22-Year Period (1986 to 2007). Journal of Clinical Microbiology, 2008, 46, 2950-2954.	1.8	132
27	Highâ€Dose Daptomycin for Treatment of Complicated Gramâ€Positive Infections: A Large, Multicenter, Retrospective Study. Pharmacotherapy, 2011, 31, 527-536.	1.2	124
28	Comparison of Length of Hospital Stay for Patients with Known or Suspected Methicillin-ResistantStaphylococcusSpecies Infections Treated with Linezolid or Vancomycin: A Randomized, Multicenter Trial. Pharmacotherapy, 2001, 21, 263-274.	1.2	121
29	Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2006, 58, 338-343.	1.3	121
30	Heterogeneous Vancomycinâ€Intermediate Susceptibility Phenotype in Bloodstream Methicillinâ€Resistant <i>Staphylococcus aureus</i> Isolates from an International Cohort of Patients with Infective Endocarditis: Prevalence, Genotype, and Clinical Significance. Journal of Infectious Diseases, 2009, 200, 1355-1366.	1.9	120
31	Activities of High-Dose Daptomycin, Vancomycin, and Moxifloxacin Alone or in Combination with Clarithromycin or Rifampin in a Novel <i>In Vitro</i> Model of <i>Staphylococcus aureus</i> Biofilm. Antimicrobial Agents and Chemotherapy, 2010, 54, 4329-4334.	1.4	118
32	Ceftaroline Increases Membrane Binding and Enhances the Activity of Daptomycin against Daptomycin-Nonsusceptible Vancomycin-Intermediate Staphylococcus aureus in a Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2013, 57, 66-73.	1.4	118
33	Effects of NorA Inhibitors on In Vitro Antibacterial Activities and Postantibiotic Effects of Levofloxacin, Ciprofloxacin, and Norfloxacin in Genetically Related Strains of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 1999, 43, 335-340.	1.4	117
34	Emergence of Methicillin-Resistant Staphylococcus aureus with Intermediate Glycopeptide Resistance. Drugs, 2001, 61, 1-7.	4.9	115
35	Evaluation of Vancomycin and Daptomycin Potency Trends (MIC Creep) against Methicillin-Resistant <i>Staphylococcus aureus</i> Isolates Collected in Nine U.S. Medical Centers from 2002 to 2006. Antimicrobial Agents and Chemotherapy, 2009, 53, 4127-4132.	1.4	113
36	Combination Antimicrobial Therapy for Bacterial Infections. Drugs, 1996, 52, 390-405.	4.9	106

3

#	Article	IF	CITATIONS
37	Short-Course Gentamicin in Combination with Daptomycin or Vancomycin against Staphylococcus aureus in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2005, 49, 2735-2745.	1.4	106
38	Antimicrobial Activities of Ceragenins against Clinical Isolates of Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2007, 51, 1268-1273.	1.4	106
39	Pharmacokinetics and Pharmacodynamics of Cefepime in Patients with Various Degrees of Renal Function. Antimicrobial Agents and Chemotherapy, 2003, 47, 1853-1861.	1.4	104
40	Community-Associated Methicillin-ResistantStaphylococcus aureus: A Review. Pharmacotherapy, 2005, 25, 74-85.	1.2	104
41	Evaluation of Accessory Gene Regulator (agr) Group and Function in the Proclivity towards Vancomycin Intermediate Resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2007, 51, 1089-1091.	1.4	101
42	Epidemiology, Treatment, and Outcomes of Nosocomial Bacteremic Staphylococcus aureus Pneumonia. Chest, 2005, 128, 1414-1422.	0.4	100
43	Characteristics of Patients With Healthcare-Associated Infection Due to SCCmecType IV Methicillin-ResistantStaphylococcus aureus. Infection Control and Hospital Epidemiology, 2006, 27, 1025-1031.	1.0	100
44	β-Lactam combinations with daptomycin provide synergy against vancomycin-resistant <i>Enterococcus faecalis</i> and <i>Enterococcus faecium</i> . Journal of Antimicrobial Chemotherapy, 2015, 70, 1738-1743.	1.3	99
45	Time Is of the Essence: The Impact of Delayed Antibiotic Therapy on Patient Outcomes in Hospital-Onset Enterococcal Bloodstream Infections. Clinical Infectious Diseases, 2016, 62, 1242-1250.	2.9	99
46	Large Retrospective Evaluation of the Effectiveness and Safety of Ceftaroline Fosamil Therapy. Antimicrobial Agents and Chemotherapy, 2014, 58, 2541-2546.	1.4	97
47	Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	96
48	Daptomycin. Pharmacotherapy, 2004, 24, 41-57.	1.2	95
49	Daptomycin Dose-Effect Relationship against Resistant Gram-Positive Organisms. Antimicrobial Agents and Chemotherapy, 2003, 47, 1598-1603.	1.4	94
50	Community- and health care-associated methicillin-resistant Staphylococcus aureus: a comparison of molecular epidemiology and antimicrobial activities of various agents. Diagnostic Microbiology and Infectious Disease, 2007, 58, 41-47.	0.8	94
51	Pharmacodynamic Characterization of Nephrotoxicity Associated with Once-Daily Aminoglycoside. Pharmacotherapy, 1999, 19, 1252-1260.	1.2	92
52	Impact of Empirical-Therapy Selection on Outcomes of Intravenous Drug Users with Infective Endocarditis Caused by Methicillin-Susceptible Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2007, 51, 3731-3733.	1.4	92
53	Evaluation of Standard- and High-Dose Daptomycin versus Linezolid against Vancomycin-Resistant Enterococcus Isolates in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2012, 56, 3174-3180.	1.4	92
54	Influences of Linezolid, Penicillin, and Clindamycin, Alone and in Combination, on Streptococcal Pyrogenic Exotoxin A Release. Antimicrobial Agents and Chemotherapy, 2003, 47, 1752-1755.	1.4	91

#	Article	IF	CITATIONS
55	Activities of Clindamycin, Daptomycin, Doxycycline, Linezolid, Trimethoprim-Sulfamethoxazole, and Vancomycin against Community-Associated Methicillin-Resistant <i>Staphylococcus aureus</i> with Inducible Clindamycin Resistance in Murine Thigh Infection and In Vitro Pharmacodynamic Models. Antimicrobial Agents and Chemotherapy, 2008, 52, 2156-2162.	1.4	91
56	A multicentre evaluation of the effectiveness and safety of high-dose daptomycin for the treatment of infective endocarditis. Journal of Antimicrobial Chemotherapy, 2013, 68, 2921-2926.	1.3	90
57	Evaluation of Daptomycin Pharmacodynamics and Resistance at Various Dosage Regimens against <i>Staphylococcus aureus</i> Isolates with Reduced Susceptibilities to Daptomycin in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2008, 52, 3061-3067.	1.4	89
58	Acute Bacterial Skin and Skin Structure Infections (ABSSSI): Practice Guidelines for Management and Care Transitions in the Emergency Department and Hospital. Journal of Emergency Medicine, 2015, 48, 508-519.	0.3	88
59	Potential synergy activity of the novel ceragenin, CSA-13, against clinical isolates of Pseudomonas aeruginosa, including multidrug-resistant P. aeruginosa. Journal of Antimicrobial Chemotherapy, 2007, 61, 365-370.	1.3	87
60	Daptomycin: The role of high-dose and combination therapy for Gram-positive infections. International Journal of Antimicrobial Agents, 2013, 42, 202-210.	1.1	82
61	Daptomycin Activity against <i>Staphylococcus aureus</i> following Vancomycin Exposure in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2008, 52, 831-836.	1.4	80
62	Multicenter Study of High-Dose Daptomycin for Treatment of Enterococcal Infections. Antimicrobial Agents and Chemotherapy, 2013, 57, 4190-4196.	1.4	80
63	Daptomycin Plus β-Lactam Combination Therapy for Methicillin-resistant Staphylococcus aureus Bloodstream Infections: A Retrospective, Comparative Cohort Study. Clinical Infectious Diseases, 2020, 71, 1-10.	2.9	79
64	Structural features of piperazinyl-linked ciprofloxacin dimers required for activity against drug-resistant strains of Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 2109-2112.	1.0	78
65	Pharmacodynamics: Relation to Antimicrobial Resistance. American Journal of Medicine, 2006, 119, S37-S44.	0.6	76
66	Inhibition of Drug Metabolism by Quinolone Antibiotics. Clinical Pharmacokinetics, 1988, 15, 194-204.	1.6	75
67	Daptomycin versus Vancomycin for Complicated Skin and Skin Structure Infections: Clinical and Economic Outcomes. Pharmacotherapy, 2007, 27, 1611-1618.	1.2	75
68	Effects of Targeting Higher Vancomycin Trough Levels on Clinical Outcomes and Costs in a Matched Patient Cohort. Pharmacotherapy, 2012, 32, 195-201.	1.2	75
69	Evaluation of Vancomycin Susceptibility Testing for Methicillin-Resistant Staphylococcus aureus: Comparison of Etest and Three Automated Testing Methods. Journal of Clinical Microbiology, 2013, 51, 2077-2081.	1.8	73
70	In Vitro Activities of Quinupristin-Dalfopristin and Cefepime, Alone and in Combination with Various Antimicrobials, against Multidrug-Resistant Staphylococci and Enterococci in an In Vitro Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2002, 46, 2606-2612.	1.4	72
71	In Vitro Activity of Ceftaroline against Methicillin-Resistant <i>Staphylococcus aureus</i> and Heterogeneous Vancomycin-Intermediate <i>S. aureus</i> in a Hollow Fiber Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 4712-4717.	1.4	72
72	Evaluation of daptomycin treatment of Staphylococcus aureus bacterial endocarditis: an in vitro and in vivo simulation using historical and current dosing strategies. Journal of Antimicrobial Chemotherapy, 2007, 60, 334-340.	1.3	71

#	Article	IF	CITATIONS
73	Effect of Linezolid versus Vancomycin on Length of Hospital Stay in Patients with Complicated Skin and Soft Tissue Infections Caused by Known or Suspected Methicillin-Resistant Staphylococci: Results from a Randomized Clinical Trial. Surgical Infections, 2003, 4, 57-70.	0.7	70
74	Outcome Assessment of Minimizing Vancomycin Monitoring and Dosing Adjustments. Pharmacotherapy, 1999, 19, 257-266.	1.2	69
75	In Vitro Activities of Daptomycin, Arbekacin, Vancomycin, and Gentamicin Alone and/or in Combination against Glycopeptide Intermediate-Resistant Staphylococcus aureus in an Infection Model. Antimicrobial Agents and Chemotherapy, 2000, 44, 1925-1929.	1.4	69
76	Associations between the Genotypes of <i>Staphylococcus aureus</i> Bloodstream Isolates and Clinical Characteristics and Outcomes of Bacteremic Patients. Journal of Clinical Microbiology, 2008, 46, 2890-2896.	1.8	69
77	Bactericidal Activities of Daptomycin, Quinupristin-Dalfopristin, and Linezolid against Vancomycin-Resistant Staphylococcus aureus in an In Vitro Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2003, 47, 3960-3963.	1.4	68
78	Clinical Outcomes in Patients with Heterogeneous Vancomycin-Intermediate Staphylococcus aureus Bloodstream Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 4252-4259.	1.4	68
79	Association between Vancomycin Day 1 Exposure Profile and Outcomes among Patients with Methicillin-Resistant Staphylococcus aureus Infective Endocarditis. Antimicrobial Agents and Chemotherapy, 2015, 59, 2978-2985.	1.4	68
80	Making the change to area under the curve–based vancomycin dosing. American Journal of Health-System Pharmacy, 2018, 75, 1986-1995.	0.5	68
81	Evaluation of the Etest GRD for the detection of Staphylococcus aureus with reduced susceptibility to glycopeptides. Journal of Antimicrobial Chemotherapy, 2009, 63, 489-492.	1.3	67
82	Evaluation of High-Dose Daptomycin Versus Vancomycin Alone or Combined with Clarithromycin or Rifampin Against Staphylococcus aureus and S. epidermidis in a Novel In Vitro PK/PD Model of Bacterial Biofilm. Infectious Diseases and Therapy, 2015, 4, 51-65.	1.8	67
83	Role of Combination Antimicrobial Therapy for Vancomycinâ€Resistant <i>Enterococcus faecium</i> Infections: Review of the Current Evidence. Pharmacotherapy, 2017, 37, 579-592.	1.2	67
84	Daptomycin – a novel antibiotic against Gram-positive pathogens. Expert Opinion on Pharmacotherapy, 2004, 5, 2321-2331.	0.9	65
85	Observation of "Seesaw Effect―with Vancomycin, Teicoplanin, Daptomycin and Ceftaroline in 150 Unique MRSA Strains. Infectious Diseases and Therapy, 2014, 3, 35-43.	1.8	63
86	Multicenter Observational Study of Ceftaroline Fosamil for Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	60
87	Daptomycin against multiple drug-resistant staphylococcus and enterococcus isolates in an in vitro pharmacodynamic model with simulated endocardial vegetations. Diagnostic Microbiology and Infectious Disease, 2003, 47, 539-546.	0.8	58
88	Daptomycin Improves Outcomes Regardless of Vancomycin MIC in a Propensity-Matched Analysis of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections. Antimicrobial Agents and Chemotherapy, 2016, 60, 5841-5848.	1.4	58
89	Activities of Mutant Prevention Concentration-Targeted Moxifloxacin and Levofloxacin against Streptococcus pneumoniae in an In Vitro Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2003, 47, 2606-2614.	1.4	57
90	Occurrence of vancomycin-tolerant and heterogeneous vancomycin-intermediate strains (hVISA) among Staphylococcus aureus causing bloodstream infections in nine USA hospitals. Journal of Antimicrobial Chemotherapy, 2009, 64, 1024-1028.	1.3	56

#	Article	IF	CITATIONS
91	Novel Daptomycin Combinations against Daptomycin-Nonsusceptible Methicillin-Resistant <i>Staphylococcus aureus</i> in an <i>In Vitro</i> Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2010, 54, 5187-5192.	1.4	55
92	Pharmacokinetics of Single-Dose Daptomycin in Patients with Suspected or Confirmed Neurological Infections. Antimicrobial Agents and Chemotherapy, 2011, 55, 3505-3509.	1.4	55
93	Reduced glycopeptide and lipopeptide susceptibility in Staphylococcus aureus and the "seesaw effectâ€ Taking advantage of the back door left open?. Drug Resistance Updates, 2013, 16, 73-79.	6.5	55
94	Evaluation of Ceftaroline Activity against Heteroresistant Vancomycin-Intermediate Staphylococcus aureus and Vancomycin-Intermediate Methicillin-Resistant S. aureus Strains in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model: Exploring the "Seesaw Effect― Antimicrobial Agents and Chemotherapy, 2013, 57, 2664-2668.	1.4	54
95	Adherence to the 2009 Consensus Guidelines for Vancomycin Dosing and Monitoring Practices: A Cross-Sectional Survey of U.S. Hospitals. Pharmacotherapy, 2013, 33, 1256-1263.	1.2	53
96	Evaluation of the novel combination of daptomycin plus ceftriaxone against vancomycin-resistant enterococci in an in vitro pharmacokinetic/pharmacodynamic simulated endocardial vegetation model. Journal of Antimicrobial Chemotherapy, 2014, 69, 2148-2154.	1.3	53
97	Epidemiology of Acute Kidney Injury among Patients Receiving Concomitant Vancomycin and Piperacillin-Tazobactam: Opportunities for Antimicrobial Stewardship. Antimicrobial Agents and Chemotherapy, 2016, 60, 3743-3750.	1.4	53
98	Quinupristin/Dalfopristin (RP 59500): A New Streptogramin Antibiotic. Annals of Pharmacotherapy, 1995, 29, 1022-1027.	0.9	52
99	Evaluation of Bactericidal Activities of LY333328, Vancomycin, Teicoplanin, Ampicillin-Sulbactam, Trovafloxacin, and RP59500 Alone or in Combination with Rifampin or Gentamicin against Different Strains of Vancomycin-Intermediate Staphylococcus aureus by Time-Kill Curve Methods. Antimicrobial Agents and Chemotherapy, 1999, 43, 717-721.	1.4	52
100	Multicenter Cohort of Patients With Methicillin-Resistant Staphylococcus aureus Bacteremia Receiving Daptomycin Plus Ceftaroline Compared With Other MRSA Treatments. Open Forum Infectious Diseases, 2020, 7, ofz538.	0.4	52
101	Piperazinyl-linked fluoroquinolone dimers possessing potent antibacterial activity against drug-resistant strains of Staphylococcus aureus. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1745-1749.	1.0	51
102	Potent synergy of ceftobiprole plus daptomycin against multiple strains of Staphylococcus aureus with various resistance phenotypes. Journal of Antimicrobial Chemotherapy, 2014, 69, 3006-3010.	1.3	50
103	Evaluation of Endocarditis Caused by Methicillin-Susceptible <i>Staphylococcus aureus</i> Developing Nonsusceptibility to Daptomycin. Journal of Clinical Microbiology, 2008, 46, 220-224.	1.8	47
104	Analysis of Vancomycin Population Susceptibility Profiles, Killing Activity, and Postantibiotic Effect against Vancomycin-Intermediate Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 1999, 43, 1914-1918.	1.4	46
105	Activities of Newer Fluoroquinolones against Ciprofloxacin-Resistant Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 2001, 45, 1654-1659.	1.4	44
106	Influence of protein binding under controlled conditions on the bactericidal activity of daptomycin in an in vitro pharmacodynamic model. Journal of Antimicrobial Chemotherapy, 2004, 54, 259-262.	1.3	44
107	Evaluation of Ceftaroline, Vancomycin, Daptomycin, or Ceftaroline plus Daptomycin against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy. 2014. 58. 3177-3181.	1.4	44
108	Dalbavancin and Oritavancin: An Innovative Approach to the Treatment of Gram-Positive Infections. Pharmacotherapy, 2015, 35, 935-948.	1.2	44

#	Article	IF	CITATIONS
109	Telavancin: An Antimicrobial with a Multifunctional Mechanism of Action for the Treatment of Serious Gram-Positive Infections. Pharmacotherapy, 2008, 28, 458-468.	1.2	43
110	Treatment of Vancomycin-Resistant <i>Enterococcus faecium</i> with RP 59500 (Quinupristin-Dalfopristin) Administered by Intermittent or Continuous Infusion, Alone or in Combination with Doxycycline, in an In Vitro Pharmacodynamic Infection Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 1998, 42, 2710-2717.	1.4	42
111	In vitro activities of mutant prevention concentration-targeted concentrations of fluoroquinolones against Staphylococcus aureus in a pharmacodynamic model. International Journal of Antimicrobial Agents, 2004, 24, 150-160.	1.1	42
112	Pharmacodynamic Analysis of Daptomycin-treated Enterococcal Bacteremia: It Is Time to Change the Breakpoint. Clinical Infectious Diseases, 2019, 68, 1650-1657.	2.9	42
113	Ofloxacin Clinical Pharmacokinetics. Clinical Pharmacokinetics, 1992, 22, 32-46.	1.6	41
114	Evaluation of Ceftaroline Alone and in Combination against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus with Reduced Susceptibility to Daptomycin and Vancomycin in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 4497-4503.	1.4	41
115	Current and prospective treatments for multidrug-resistant gram-positive infections. Expert Opinion on Pharmacotherapy, 2013, 14, 1919-1932.	0.9	40
116	β-Lactams Enhance Daptomycin Activity against Vancomycin-Resistant Enterococcus faecalis and Enterococcus faecium in <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Models. Antimicrobial Agents and Chemotherapy, 2015, 59, 2842-2848.	1.4	40
117	Alternative Mutational Pathways to Intermediate Resistance to Vancomycin in Methicillin-Resistant Staphylococcus aureus. Journal of Infectious Diseases, 2013, 208, 67-74.	1.9	39
118	Vancomycin plus ceftaroline shows potent in vitro synergy and was successfully utilized to clear persistent daptomycin-non-susceptible MRSA bacteraemia. Journal of Antimicrobial Chemotherapy, 2015, 70, 311-313.	1.3	39
119	Comparison of a Rabbit Model of Bacterial Endocarditis and an In Vitro Infection Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2000, 44, 1921-1924.	1.4	38
120	β-Lactam Combinations with Vancomycin Show Synergistic Activity against Vancomycin-Susceptible Staphylococcus aureus, Vancomycin-Intermediate S. aureus (VISA), and Heterogeneous VISA. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	38
121	Treatment of Methicillin-Resistant Staphylococcus aureus Infections with a Minimal Inhibitory Concentration of 2 μg/mL to Vancomycin: Old (Trimethoprim/Sulfamethoxazole) versus New (Daptomycin or Linezolid) Agents. Annals of Pharmacotherapy, 2012, 46, 1587-1597.	0.9	37
122	Fosfomycin Enhances the Activity of Daptomycin against Vancomycin-Resistant Enterococci in an <i>In Vitro</i> Pharmacokinetic-Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 5716-5723.	1.4	37
123	Clinical glycopeptide-intermediate staphylococci tested against arbekacin, daptomycin, and tigecycline. Diagnostic Microbiology and Infectious Disease, 2004, 50, 125-130.	0.8	36
124	Evaluation of Ceftaroline Activity versus Daptomycin (DAP) against DAP-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Strains in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2011, 55, 3522-3526.	1.4	36
125	A Novel Approach Utilizing Biofilm Time-Kill Curves To Assess the Bactericidal Activity of Ceftaroline Combinations against Biofilm-Producing Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 2989-2992.	1.4	36
126	The combination of ceftaroline plus daptomycin allows for therapeutic de-escalation and daptomycin sparing against MRSA. Journal of Antimicrobial Chemotherapy, 2015, 70, 505-509.	1.3	36

#	Article	IF	CITATIONS
127	Sequential intravenous-to-oral outpatient antibiotic therapy for MRSA bacteraemia: one step closer. Journal of Antimicrobial Chemotherapy, 2019, 74, 489-498.	1.3	36
128	Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus: Does Vancomycin Heteroresistance Matter?. Antimicrobial Agents and Chemotherapy, 2016, 60, 1708-1716.	1.4	35
129	Pharmacodynamics of Cefepime Alone and in Combination with Various Antimicrobials against Methicillin-Resistant Staphylococcus aureus in an In Vitro Pharmacodynamic Infection Model. Antimicrobial Agents and Chemotherapy, 2005, 49, 302-308.	1.4	34
130	Implementation of an Antimicrobial Stewardship Pathway with Daptomycin for Optimal Treatment of Methicillinâ€Resistant <i><scp>S</scp>taphylococcus aureus</i> Bacteremia. Pharmacotherapy, 2013, 33, 3-10.	1.2	34
131	Influence of Inoculum Effect on the Efficacy of Daptomycin Monotherapy and in Combination with β-Lactams against Daptomycin-Susceptible Enterococcus faecium Harboring LiaSR Substitutions. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	34
132	Resistance to Antimicrobial Agents: An Update. Pharmacotherapy, 2004, 24, 203S-215S.	1.2	33
133	Evaluation of daptomycin, telavancin, teicoplanin, and vancomycin activity in the presence of albumin or serum. Diagnostic Microbiology and Infectious Disease, 2008, 60, 441-444.	0.8	33
134	Evaluation of the Novel Combination of High-Dose Daptomycin plus Trimethoprim-Sulfamethoxazole against Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Using an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2012, 56, 5709-5714.	1.4	33
135	The effects of NorA inhibition on the activities of levofloxacin, ciprofloxacin and norfloxacin against two genetically related strains of Staphylococcus aureus in an in-vitro infection model. Journal of Antimicrobial Chemotherapy, 1999, 44, 343-349.	1.3	32
136	Increased Theophylline Concentrations Secondary to Ciprofloxacin. Drug Intelligence & Clinical Pharmacy, 1987, 21, 879-881.	0.4	30
137	Fluoroquinolone Resistance in Streptococcus pneumoniae : Area Under the Concentration-Time Curve/MIC Ratio and Resistance Development with Gatifloxacin, Gemifloxacin, Levofloxacin, and Moxifloxacin. Antimicrobial Agents and Chemotherapy, 2007, 51, 1315-1320.	1.4	29
138	Correlation of vancomycin and daptomycin susceptibility in Staphylococcus aureus in reference to accessory gene regulator (agr) polymorphism and function. Journal of Antimicrobial Chemotherapy, 2007, 59, 1190-1193.	1.3	29
139	Antimicrobial Susceptibility and Staphylococcal Chromosomal CassettemecType in Community- and Hospital-Associated Methicillin-ResistantStaphylococcus aureus. Pharmacotherapy, 2007, 27, 3-10.	1.2	29
140	Impact of Inoculum Size and Heterogeneous Vancomycin-Intermediate <i>Staphylococcus aureus</i> (hVISA) on Vancomycin Activity and Emergence of VISA in an In Vitro Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 805-807.	1.4	29
141	Impact of the Combination of Daptomycin and Trimethoprim-Sulfamethoxazole on Clinical Outcomes in Methicillin-Resistant Staphylococcus aureus Infections. Antimicrobial Agents and Chemotherapy, 2015, 59, 1969-1976.	1.4	29
142	Bacteriophage-Antibiotic Combinations for Enterococcus faecium with Varying Bacteriophage and Daptomycin Susceptibilities. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	28
143	Evaluation of vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus and heterogeneously vancomycin-intermediate S. aureus in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations. Journal of Antimicrobial Chemotherapy, 2008, 63, 155-160.	1.3	27
144	Daptomycin-Nonsusceptible Vancomycin-Intermediate Staphylococcus aureus Vertebral Osteomyelitis Cases Complicated by Bacteremia Treated with High-Dose Daptomycin and Trimethoprim-Sulfamethoxazole. Antimicrobial Agents and Chemotherapy, 2012, 56, 5990-5993.	1.4	27

#	Article	IF	CITATIONS
145	Evaluation of daptomycin activity against Staphylococcus aureus in an in vitro pharmacodynamic model under normal and simulated impaired renal function. Journal of Antimicrobial Chemotherapy, 2006, 57, 116-121.	1.3	25
146	Activity of Telavancin against Staphylococcus aureus Strains with Various Vancomycin Susceptibilities in an In Vitro Pharmacokinetic/Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2009, 53, 2928-2933.	1.4	24
147	Efficacy and Safety of Tedizolid Phosphate versus Linezolid in a Randomized Phase 3 Trial in Patients with Acute Bacterial Skin and Skin Structure Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	24
148	A Multicenter Evaluation of Vancomycin-Associated Acute Kidney Injury in Hospitalized Patients with Acute Bacterial Skin and Skin Structure Infections. Infectious Diseases and Therapy, 2020, 9, 89-106.	1.8	24
149	In vitro evaluation of ceftaroline alone and in combination with tobramycin against hospital-acquired meticillin-resistant Staphylococcus aureus (HA-MRSA) isolates. International Journal of Antimicrobial Agents, 2010, 35, 527-530.	1.1	23
150	Growing Prevalence of Vancomycin-ResistantEnterococcus faecalisin the Region with the Highest Prevalence of Vancomycin-ResistantStaphylococcus aureus. Infection Control and Hospital Epidemiology, 2011, 32, 922-924.	1.0	23
151	High-Dose Daptomycin Therapy for Staphylococcal Endocarditis and When to Apply It. Current Infectious Disease Reports, 2014, 16, 429.	1.3	23
152	Oritavancin Combinations with \hat{l}^2 -Lactams against Multidrug-Resistant Staphylococcus aureus and Vancomycin-Resistant Enterococci. Antimicrobial Agents and Chemotherapy, 2016, 60, 2352-2358.	1.4	23
153	Clinical use and toxicity of high-dose tobramycin in patients with pseudomonal endocarditis. Journal of Antimicrobial Chemotherapy, 1986, 17, 115-120.	1.3	22
154	Accessory Gene Regulator Dysfunction: An Advantage forStaphylococcus aureusin Health are Settings?. Journal of Infectious Diseases, 2009, 199, 1558-1559.	1.9	21
155	Characterizing Vancomycin-Resistant Enterococcus Strains with Various Mechanisms of Daptomycin Resistance Developed in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2011, 55, 4748-4754.	1.4	21
156	Evaluation of Telavancin Activity versus Daptomycin and Vancomycin against Daptomycin-Nonsusceptible Staphylococcus aureus in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2012, 56, 955-959.	1.4	20
157	Dalbavancin Alone and in Combination with Ceftaroline against Four Different Phenotypes of <i>Staphylococcus aureus</i> in a Simulated Pharmacodynamic/Pharmacokinetic Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	20
158	Monotherapy with Vancomycin or Daptomycin versus Combination Therapy with β-Lactams in the Treatment of Methicillin-Resistant Staphylococcus Aureus Bloodstream Infections: A Retrospective Cohort Analysis. Infectious Diseases and Therapy, 2020, 9, 325-339.	1.8	20
159	Clinical isolates of Staphylococcus aureus from 1987 and 1989 demonstrating heterogeneous resistance to vancomycin and teicoplanin. Diagnostic Microbiology and Infectious Disease, 2005, 51, 119-125.	0.8	19
160	Synergy between gemifloxacin and trimethoprim/sulfamethoxazole against community-associated methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2008, 62, 1305-1310.	1.3	19
161	The Evolving Reduction of Vancomycin and Daptomycin Susceptibility in MRSA—Salvaging the Gold Standards with Combination Therapy. Antibiotics, 2020, 9, 762.	1.5	19
162	Combination of Vancomycin or Daptomycin and Betaâ€lactam Antibiotics: A Metaâ€analysis. Pharmacotherapy, 2020, 40, 648-658.	1.2	19

#	Article	IF	CITATIONS
163	Impact of Daptomycin Dose Exposure Alone or in Combination with β-Lactams or Rifampin against Vancomycin-Resistant Enterococci in an <i>In Vitro</i> Biofilm Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	19
164	Impact of Enterococcus faecalis on the Bactericidal Activities of Arbekacin, Daptomycin, Linezolid, and Tigecycline against Methicillin-Resistant Staphylococcus aureus in a Mixed-Pathogen Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2006, 50, 1298-1303.	1.4	18
165	Evaluation of dalbavancin, tigecycline, minocycline, tetracycline, teicoplanin and vancomycin against community-associated and multidrug-resistant hospital-associated meticillin-resistant Staphylococcus aureus. International Journal of Antimicrobial Agents, 2010, 35, 25-29.	1.1	18
166	Sequential Evolution of Vancomycin-Intermediate Resistance Alters Virulence in Staphylococcus aureus: Pharmacokinetic/Pharmacodynamic Targets for Vancomycin Exposure. Antimicrobial Agents and Chemotherapy, 2016, 60, 1584-1591.	1.4	18
167	Classical β-Lactamase Inhibitors Potentiate the Activity of Daptomycin against Methicillin-Resistant Staphylococcus aureus and Colistin against Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	18
168	Evaluation of daptomycin combinations with cephalosporins or gentamicin against Streptococcus mitis group strains in an in vitro model of simulated endocardial vegetations (SEVs). Journal of Antimicrobial Chemotherapy, 2017, 72, 2290-2296.	1.3	17
169	Once-Daily Aminoglycoside in the Treatment ofEnterococcus faecalisEndocarditis: Case Report and Review. Pharmacotherapy, 2000, 20, 1116-1119.	1.2	16
170	Nephrotoxicity Comparison of Two Commercially Available Generic Vancomycin Products. Antimicrobial Agents and Chemotherapy, 2015, 59, 5470-5474.	1.4	16
171	Daptomycin in Combination with Ceftolozane-Tazobactam or Cefazolin against Daptomycin-Susceptible and -Nonsusceptible Staphylococcus aureus in an In Vitro , Hollow-Fiber Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 3970-3975.	1.4	16
172	Evaluation of Vancomycin Population Susceptibility Analysis Profile as a Predictor of Outcomes for Patients with Infective Endocarditis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 4636-4641.	1.4	14
173	Combination of Tedizolid and Daptomycin against Methicillin-Resistant Staphylococcus aureus in an <i>In Vitro</i> Model of Simulated Endocardial Vegetations. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	14
174	Evaluation of dalbavancin alone and in combination with β-lactam antibiotics against resistant phenotypes of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2018, 74, 82-86.	1.3	14
175	Daptomycin Dose-Ranging Evaluation with Single-Dose versus Multidose Ceftriaxone Combinations against Streptococcus mitis <i>/oralis</i> in an <i>Ex Vivo</i> Simulated Endocarditis Vegetation Model. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	13
176	Bacteriophage AB-SA01 Cocktail in Combination with Antibiotics against MRSA-VISA Strain in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2020, 65,	1.4	13
177	Linezolid and Vancomycin, Alone and in Combination with Rifampin, Compared with Moxifloxacin against a Multidrug-Resistant and a Vancomycin-Tolerant Streptococcus pneumoniae Strain in an In Vitro Pharmacodynamic Model. Antimicrobial Agents and Chemotherapy, 2003, 47, 1984-1987.	1.4	12
178	Impact of Dose De-Escalation and Escalation on Daptomycin's Pharmacodynamics against Clinical Methicillin-Resistant Staphylococcus aureus Isolates in an <i>In Vitro</i> Model. Antimicrobial Agents and Chemotherapy, 2011, 55, 2160-2165.	1.4	12
179	β-Lactamase Inhibitors Enhance the Synergy between β-Lactam Antibiotics and Daptomycin against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	12
180	Impact of cefazolin co-administration with vancomycin to reduce development of vancomycin-intermediate Staphylococcus aureus. Diagnostic Microbiology and Infectious Disease, 2018, 91, 363-370.	0.8	12

#	Article	IF	CITATIONS
181	Multicenter Cohort Study of Ceftaroline Versus Daptomycin for Treatment of Methicillin-Resistant <i>Staphylococcus aureus</i> Bloodstream Infection. Open Forum Infectious Diseases, 2022, 9, ofab606.	0.4	12
182	In Vitro Activities of a Novel Cephalosporin, CB-181963 (CAB-175), against Methicillin-Susceptible or -Resistant Staphylococcus aureus and Glycopeptide-Intermediate Susceptible Staphylococci. Antimicrobial Agents and Chemotherapy, 2004, 48, 2719-2723.	1.4	11
183	Relationship Status between Vancomycin Loading Dose and Treatment Failure in Patients with MRSA Bacteremia: It's Complicated. Infectious Diseases and Therapy, 2019, 8, 627-640.	1.8	11
184	Mechanistic Insights Into the Differential Efficacy of Daptomycin Plus β-Lactam Combinations Against Daptomycin-Resistant Enterococcus faecium. Journal of Infectious Diseases, 2020, 222, 1531-1539.	1.9	11
185	The Impact of Concomitant Empiric Cefepime on Patient Outcomes of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections Treated With Vancomycin. Open Forum Infectious Diseases, 2019, 6, ofz079.	0.4	10
186	Dalbavancin, Vancomycin and Daptomycin Alone and in Combination with Cefazolin against Resistant Phenotypes of Staphylococcus aureus in a Pharmacokinetic/Pharmacodynamic Model. Antibiotics, 2020, 9, 696.	1.5	10
187	Susceptibility studies of piperazinyl–cross-linked fluoroquinolone dimers against test strains of Gram-positive and Gram-negative bacteria. Diagnostic Microbiology and Infectious Disease, 2006, 54, 305-310.	0.8	9
188	In vitro pharmacokinetic/pharmacodynamic activity of NXL103 versus clindamycin and linezolid against clinical Staphylococcus aureus and Streptococcus pyogenes isolates. International Journal of Antimicrobial Agents, 2011, 38, 301-306.	1.1	9
189	Evaluation of Daptomycin Non-Susceptible Staphylococcus aureus for Stability, Population Profiles, mprF Mutations, and Daptomycin Activity. Infectious Diseases and Therapy, 2013, 2, 187-200.	1.8	9
190	Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA) Pneumonia with Ceftaroline Fosamil in a Patient with Inhalational Thermal Injury. Infectious Diseases and Therapy, 2015, 4, 519-528.	1.8	9
191	Evaluation of Telavancin Alone and Combined with Ceftaroline or Rifampin against Methicillin-Resistant Staphylococcus aureus in an <i>In Vitro</i> Biofilm Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	9
192	Pharmacodynamics of daptomycin in combination with other antibiotics for the treatment of enterococcal bacteraemia. International Journal of Antimicrobial Agents, 2019, 54, 346-350.	1.1	9
193	Folate Functionalized Lipid Nanoparticles for Targeted Therapy of Methicillin-Resistant Staphylococcus aureus. Pharmaceutics, 2021, 13, 1791.	2.0	9
194	Therapeutic options for Gram-positive infections. Journal of Hospital Infection, 2001, 49, S25-S32.	1.4	8
195	Withdrawn as Duplicate: The Impact of Concomitant Empiric Cefepime on Patient Outcomes of Methicillin-Resistant Staphylococcus aureus Bloodstream Infections Treated With Vancomycin. Open Forum Infectious Diseases, 2019, 6, ofz077.	0.4	8
196	A comparison of daptomycin alone and in combination with ceftaroline fosamil for methicillin-resistant Staphylococcus aureus bacteremia complicated by septic pulmonary emboli. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 2199-2203.	1.3	8
197	Biofilm Time-Kill Curves to Assess the Bactericidal Activity of Daptomycin Combinations against Biofilm-Producing Vancomycin-Resistant EnterococcusÂfaecium and faecalis. Antibiotics, 2021, 10, 897.	1.5	8
198	Evaluation of Bacteriophage-Antibiotic Combination Therapy for Biofilm-Embedded MDR Enterococcus faecium. Antibiotics, 2022, 11, 392.	1.5	8

#	Article	IF	CITATIONS
199	Comparative Epidemiology of Bacteremia due to Methicillin-Resistant Staphylococcus aureus between Older and Younger Adults A Propensity Score Analysis. Infection Control and Hospital Epidemiology, 2013, 34, 400-406.	1.0	7
200	Evaluation of Pharmacodynamic Interactions Between Telavancin and Aztreonam or Piperacillin/Tazobactam Against Pseudomonas aeruginosa, Escherichia coli and Methicillin-Resistant Staphylococcus aureus. Infectious Diseases and Therapy, 2016, 5, 367-377.	1.8	7
201	Time-kill determination of the bactericidal activity of telavancin and vancomycin against clinical methicillin-resistant Staphylococcus aureus isolates from cancer patients. Diagnostic Microbiology and Infectious Disease, 2017, 87, 338-342.	0.8	7
202	Role of Vancomycin Minimum Inhibitory Concentrations by Modified Population Analysis Profile Method and Clinical Outcomes in High Inoculum Methicillin-Resistant Staphylococcus aureus Infections. Infectious Diseases and Therapy, 2018, 7, 161-169.	1.8	7
203	Open-Label Randomized Trial of Early Clinical Outcomes of Ceftaroline Fosamil Versus Vancomycin for the Treatment of Acute Bacterial Skin and Skin Structure Infections at Risk of Methicillin-Resistant Staphylococcus aureus. Infectious Diseases and Therapy, 2019, 8, 199-208.	1.8	7
204	Diagnostic Stewardship: A Clinical Decision Rule for Blood Cultures in Community-Onset Methicillin-Resistant Staphylococcus aureus (MRSA) Skin and Soft Tissue Infections. Infectious Diseases and Therapy, 2019, 8, 229-242.	1.8	7
205	Vancomycin Area Under the Curve to Predict Timely Clinical Response in the Treatment of Methicillin-resistant <i>Staphylococcus aureus</i> Complicated Skin and Soft Tissue Infections. Clinical Infectious Diseases, 2021, 73, e4560-e4567.	2.9	7
206	Validity of 2020 vancomycin consensus recommendations and further guidance for practical application. American Journal of Health-System Pharmacy, 2021, 78, 1364-1367.	0.5	7
207	Standardized Treatment and Assessment Pathway Improves Mortality in Adults With Methicillin-resistant <i>Staphylococcus aureus</i> Bacteremia: STAPH Study. Open Forum Infectious Diseases, 2021, 8, ofab261.	0.4	7
208	Oxazolidinones: new players in the battle against multi-resistant Gram-positive bacteria. Expert Opinion on Emerging Drugs, 2001, 6, 43-55.	1.1	6
209	Comparison of outcomes between patients with single versus multiple positive blood cultures for Enterococcus: Infection versus illusion?. American Journal of Infection Control, 2016, 44, 47-49.	1.1	5
210	A new simplified predictive model for mortality in methicillin-resistant Staphylococcus aureus bacteremia. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 843-850.	1.3	5
211	Pharmacokinetics and Pharmacodynamics of Ceftizoxime in Patients with Dosages Adjusted for Renal Function. Pharmacotherapy, 2000, 20, 554-561.	1.2	4
212	Clinical Rationale for Treatment of Endocarditis Caused by Methicillin-Susceptible Staphylococcus aureus Developing Nonsusceptibility to Daptomycin. Journal of Clinical Microbiology, 2008, 46, 2471-2472.	1.8	3
213	Development of a Risk-Scoring Tool to Determine Appropriate Level of Care in Acute Bacterial Skin and Skin Structure Infections in an Acute Healthcare Setting. Infectious Diseases and Therapy, 2018, 7, 495-507.	1.8	2
214	Bactericidal activity of ceftaroline, vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus isolates from cancer patients. Journal of Global Antimicrobial Resistance, 2019, 17, 16-18.	0.9	2
215	Risk Factors for Bloodstream Infections Among an Urban Population with Skin and Soft Tissue Infections: A Retrospective Unmatched Case-Control Study. Infectious Diseases and Therapy, 2019, 8, 75-85.	1.8	2
216	Comment on: Failure of combination therapy with daptomycin and synergistic ceftriaxone for enterococcal endocarditis. Journal of Antimicrobial Chemotherapy, 2015, 70, 1272-1273.	1.3	1

#	Article	IF	CITATIONS
217	Reply to Koehler et al. Clinical Infectious Diseases, 2019, 69, 901-902.	2.9	1
218	Reply to Cataldo et al. Clinical Infectious Diseases, 2011, 53, 310-310.	2.9	0
219	Daptomycin: Pharmacokinetic, Pharmacodynamic, and Dose Optimization. , 2014, , 381-399.		0
220	Daptomycin Resistance. , 2017, , 307-317.		0