Stephen M Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10690757/publications.pdf

Version: 2024-02-01

58 papers 9,427 citations

38 h-index 56 g-index

60 all docs 60 docs citations

60 times ranked

10838 citing authors

#	Article	IF	CITATIONS
1	The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology, 2011, 141, 599-609.e3.	1.3	1,380
2	The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology, 2012, 10, 735-742.	28.6	1,249
3	Chronic Gastrointestinal Inflammation Induces Anxiety-Like Behavior and Alters Central Nervous System Biochemistry in Mice. Gastroenterology, 2010, 139, 2102-2112.e1.	1.3	553
4	Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology, 2017, 153, 448-459.e8.	1.3	542
5	The Relationship Between Intestinal Microbiota and the Central Nervous System in Normal Gastrointestinal Function and Disease. Gastroenterology, 2009, 136, 2003-2014.	1.3	492
6	Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Science Translational Medicine, 2017, 9, .	12.4	366
7	The Vagus Nerve: A Tonic Inhibitory Influence Associated With Inflammatory Bowel Disease in a Murine Model. Gastroenterology, 2006, 131, 1122-1130.	1.3	361
8	Incidence and Epidemiology of Irritable Bowel Syndrome After a Large Waterborne Outbreak of Bacterial Dysentery. Gastroenterology, 2006, 131, 445-450.	1.3	338
9	A role for the gut microbiota in IBS. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 497-505.	17.8	304
10	The microbiota–gut–brain axis in gastrointestinal disorders: stressed bugs, stressed brain or both?. Journal of Physiology, 2014, 592, 2989-2997.	2.9	242
11	Fundamentals of Neurogastroenterology: Basic Science. Gastroenterology, 2006, 130, 1391-1411.	1.3	241
12	Eight year prognosis of postinfectious irritable bowel syndrome following waterborne bacterial dysentery. Gut, 2010, 59, 605-611.	12.1	189
13	The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Current Opinion in Microbiology, 2013, 16, 240-245.	5.1	180
14	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	11.1	176
15	Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. Journal of Clinical Investigation, 2008, 118, 2209-18.	8.2	175
16	IV. Modulation of intestinal inflammation by stress: basic mechanisms and clinical relevance. American Journal of Physiology - Renal Physiology, 2001, 280, G315-G318.	3.4	173
17	Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology, 2004, 127, 826-837.	1.3	171
18	Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Medicine, 2016, 8, 72.	8.2	150

#	Article	IF	CITATIONS
19	Reactivation of Inflammatory Bowel Disease in a Mouse Model of Depression. Gastroenterology, 2009, 136, 2280-2288.e4.	1.3	147
20	Experimental colitis alters myenteric nerve function at inflamed and noninflamed sites in the rat. Gastroenterology, 1995, 109, 718-722.	1.3	132
21	Interstitial cells of Cajal and inflammation-induced motor dysfunction in the mouse small intestine. Gastroenterology, 2000, 119, 1590-1599.	1.3	132
22	Modulation of Gut Microbiota Composition by Serotonin Signaling Influences Intestinal Immune Response and Susceptibility to Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 709-728.	4.5	132
23	The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes, 2014, 5, 419-429.	9.8	112
24	Antidepressants Attenuate Increased Susceptibility to Colitis in a Murine Model of Depression. Gastroenterology, 2006, 130, 1743-1753.	1.3	111
25	Anxiety and Depression Increase in a Stepwise Manner in Parallel With Multiple FGIDs and Symptom Severity and Frequency. American Journal of Gastroenterology, 2015, 110, 1038-1048.	0.4	108
26	Pregnancy outcomes in women taking probiotics or prebiotics: a systematic review and meta-analysis. BMC Pregnancy and Childbirth, 2018, 18, 14.	2.4	105
27	Measurement of upper esophageal sphincter pressure. Gastroenterology, 1987, 93, 526-532.	1.3	95
28	Upper esophageal sphincter tone and reactivity to stress in patients with a history of globus sensation. Digestive Diseases and Sciences, 1989, 34, 672-676.	2.3	95
29	Vagus nerve integrity and experimental colitis. American Journal of Physiology - Renal Physiology, 2007, 293, G560-G567.	3.4	83
30	Pathology of Interstitial Cells of Cajal in Relation to Inflammation Revealed by Ultrastructure But Not Immunohistochemistry. American Journal of Pathology, 2002, 160, 1529-1540.	3.8	77
31	Prevalence of Uninvestigated Dyspepsia 8 Years After a Large Waterborne Outbreak of Bacterial Dysentery: A Cohort Study. Gastroenterology, 2010, 138, 1727-1736.	1.3	75
32	The Effects of Inflammation, Infection and Antibiotics on the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 279-289.	1.6	73
33	Immune-mediated neural dysfunction in a murine model of chronic Helicobacter pylori infection. Gastroenterology, 2002, 123, 1205-1215.	1.3	68
34	T-lymphocyte modulation of intestinal muscle function in the Trichinella-infected rat. Gastroenterology, 1991, 101, 31-38.	1.3	64
35	The Incidence of Irritable Bowel Syndrome Among Community Subjects With Previous Acute Enteric Infection. Digestive Diseases and Sciences, 2006, 51, 1026-1032.	2.3	58

Recommendations on Chronic Constipation (Including Constipation Associated with Irritable Bowel) Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 57

#	Article	IF	CITATIONS
37	Role of gut-brain axis in persistent abnormal feeding behavior in mice following eradication of <i>Helicobacter pylori</i> infection. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R587-R594.	1.8	55
38	Intestinal bacteria influence brain activity in healthy humans. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 326-327.	17.8	49
39	Interrogating the Gut-Brain Axis in the Context of Inflammatory Bowel Disease: A Translational Approach. Inflammatory Bowel Diseases, 2020, 26, 493-501.	1.9	39
40	Adoptive transfer of macrophage from mice with depression-like behavior enhances susceptibility to colitis. Inflammatory Bowel Diseases, 2011, 17, 1474-1489.	1.9	33
41	Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity. PLoS ONE, 2014, 9, e114799.	2.5	31
42	Gluten-Free Diet Reduces Symptoms, Particularly Diarrhea, in Patients With Irritable Bowel Syndrome and AntigliadinÂlgG. Clinical Gastroenterology and Hepatology, 2021, 19, 2343-2352.e8.	4.4	30
43	Postinfectious Chronic Gut Dysfunction: From Bench to Bedside. American Journal of Gastroenterology Supplements (Print), 2012, 1, 2-8.	0.7	21
44	Metformin-induced reductions in tumor growth involves modulation of the gut microbiome. Molecular Metabolism, 2022, 61, 101498.	6.5	21
45	Peripheral Mechanisms of Symptom Generation in Irritable Bowel Syndrome. Canadian Journal of Gastroenterology & Hepatology, 2001, 15, 14B-16B.	1.7	18
46	Neural change in <i>Trichinella </i> -infected mice is MHC II independent and involves M-CSF-derived macrophages. American Journal of Physiology - Renal Physiology, 2001, 281, G151-G158.	3.4	17
47	Alterations in Enteric Nerve and Smooth-Muscle Function in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 1997, 3, 38-48.	1.9	15
48	Influence of recording techniques on measurement of canine colonic motility. Digestive Diseases and Sciences, 1988, 33, 999-1006.	2.3	14
49	Alterations in enteric nerve and smooth-muscle function in inflammatory bowel diseases. Inflammatory Bowel Diseases, 1997, 3, 38-48.	1.9	14
50	The Establishment of a National Tissue Bank for Inflammatory Bowel Disease Research in Canada. Canadian Journal of Gastroenterology & Hepatology, 2003, 17, 107-109.	1.7	11
51	Translating symptoms into mechanisms: functional GI disorders. American Journal of Physiology - Advances in Physiology Education, 2007, 31, 329-331.	1.6	11
52	The Sphincter of O'Beirneâ€"Part 2: Report of a Case of Chronic Constipation with Autonomous Dyssynergia. Digestive Diseases and Sciences, 2021, 66, 3529-3541.	2.3	10
53	Transcriptional markers of excitation-inhibition balance in germ-free mice show region-specific dysregulation and rescue after bacterial colonization. Journal of Psychiatric Research, 2021, 135, 248-255.	3.1	9
54	The long-term functional consequences of acute infectious diarrhea. Current Opinion in Gastroenterology, 2016, 32, 1-6.	2.3	8

STEPHEN M COLLINS

#	Article	IF	CITATION
55	Su1990 The Role of Microbiota in the Maternal Separation Model of Depression. Gastroenterology, 2012, 142, S-554.	1.3	3
56	Role of Smooth Muscle in Intestinal Inflammation. Canadian Journal of Gastroenterology & Hepatology, 1996, 10, 249-253.	1.7	1
57	What Will Research Tell Us About the Future in IBD?. Canadian Journal of Gastroenterology & Hepatology, 1993, 7, 51-54.	1.7	0
58	A Canadian Perspective on the Management of Irritable Bowel Syndrome. Canadian Journal of Gastroenterology & Hepatology, 2001, 15, 4B-4B.	1.7	0