Ryan G Kruger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10689969/publications.pdf

Version: 2024-02-01

109321 7,344 46 35 citations h-index papers

47 g-index 47 47 47 11314 docs citations times ranked citing authors all docs

214800

#	Article	IF	Citations
1	Inhibiting Type I Arginine Methyltransferase Activity Promotes T Cell–Mediated Antitumor Immune Responses. Cancer Immunology Research, 2022, 10, 420-436.	3.4	17
2	Phase I trials of the lysine-specific demethylase 1 inhibitor, GSK2879552, asÂmono- and combination-therapy in relapsed/refractory acute myeloid leukemia or high-risk myelodysplastic syndromes. Leukemia and Lymphoma, 2022, 63, 463-467.	1.3	13
3	<i>In vitro</i> and <i>in vivo</i> induction of fetal hemoglobin with a reversible and selective DNMT1 inhibitor. Haematologica, 2021, 106, 1979-1987.	3.5	41
4	Fragment-based Scaffold Hopping: Identification of Potent, Selective, and Highly Soluble Bromo and Extra Terminal Domain (BET) Second Bromodomain (BD2) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10772-10805.	6.4	17
5	Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1002-1017.	13.2	99
6	Discovery of a first-in-class reversible DNMT1-selective inhibitor with improved tolerability and efficacy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1002-1017.	13.2	23
7	Anti-tumor Activity of the Type I PRMT Inhibitor, GSK3368715, Synergizes with PRMT5 Inhibition through MTAP Loss. Cancer Cell, 2019, 36, 100-114.e25.	16.8	196
8	Phase I, Open-Label, Dose-Escalation Study of the Safety, Pharmacokinetics, Pharmacodynamics, and Efficacy of GSK2879552 in Relapsed/Refractory SCLC. Journal of Thoracic Oncology, 2019, 14, 1828-1838.	1.1	50
9	Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nature Communications, 2019, 10, 2723.	12.8	126
10	Rational Targeting of Cooperating Layers of the Epigenome Yields Enhanced Therapeutic Efficacy against AML. Cancer Discovery, 2019, 9, 872-889.	9.4	36
11	Histone demethylase LSD1 is required for germinal center formation and BCL6-driven lymphomagenesis. Nature Immunology, 2019, 20, 86-96.	14.5	71
12	Lysine specific demethylase 1 inactivation enhances differentiation and promotes cytotoxic response when combined with all- <i>trans</i> retinoic acid in acute myeloid leukemia across subtypes. Haematologica, 2019, 104, 1156-1167.	3.5	50
13	MEK inhibitors overcome resistance to BET inhibition across a number of solid and hematologic cancers. Oncogenesis, 2018, 7, 35.	4.9	28
14	LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPÎ \pm -dependent enhancers in AML. Blood, 2018, 131, 1730-1742.	1.4	92
15	Activation of the p53-MDM4 regulatory axis defines the anti-tumour response to PRMT5 inhibition through its role in regulating cellular splicing. Scientific Reports, 2018, 8, 9711.	3.3	128
16	CARM1 Is Essential for Myeloid Leukemogenesis but Dispensable for Normal Hematopoiesis. Cancer Cell, 2018, 33, 1111-1127.e5.	16.8	48
17	Targeting Histone Methylation in Cancer. Cancer Journal (Sudbury, Mass), 2017, 23, 292-301.	2.0	54
18	Identification of a CARM1 Inhibitor with Potent In Vitro and In Vivo Activity in Preclinical Models of Multiple Myeloma. Scientific Reports, 2017, 7, 17993.	3.3	85

#	Article	IF	CITATIONS
19	Structure-Based Design of a Novel SMYD3 Inhibitor that Bridges the SAM-and MEKK2-Binding Pockets. Structure, 2016, 24, 774-781.	3.3	53
20	Antitumor activity of LSD1 inhibitors in lung cancer. Molecular and Cellular Oncology, 2016, 3, e1117700.	0.7	22
21	A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. Cancer Cell, 2015, 28, 57-69.	16.8	414
22	The promise and peril of chemical probes. Nature Chemical Biology, 2015, 11, 536-541.	8.0	698
23	A687V EZH2 Is a Driver of Histone H3 Lysine 27 (H3K27) Hypertrimethylation. Molecular Cancer Therapeutics, 2014, 13, 3062-3073.	4.1	44
24	Long Residence Time Inhibition of EZH2 in Activated Polycomb Repressive Complex 2. ACS Chemical Biology, 2014, 9, 622-629.	3.4	55
25	SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature, 2014, 510, 283-287.	27.8	331
26	EZH2 Is Required for Germinal Center Formation and Somatic EZH2 Mutations Promote Lymphoid Transformation. Cancer Cell, 2013, 23, 677-692.	16.8	706
27	Inhibition Of LSD1 As a Therapeutic Strategy For The Treatment Of Acute Myeloid Leukemia. Blood, 2013, 122, 3964-3964.	1.4	25
28	Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2989-2994.	7.1	445
29	Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics, 2012, 7, 340-343.	2.7	158
30	Development and Validation of Reagents and Assays for EZH2 Peptide and Nucleosome High-Throughput Screens. Journal of Biomolecular Screening, 2012, 17, 1279-1292.	2.6	54
31	Identification of Potent, Selective, Cell-Active Inhibitors of the Histone Lysine Methyltransferase EZH2. ACS Medicinal Chemistry Letters, 2012, 3, 1091-1096.	2.8	332
32	EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature, 2012, 492, 108-112.	27.8	1,558
33	Kinetic Analysis of Teicoplanin Glycosyltransferases and Acyltransferase Reveal Ordered Tailoring of Aglycone Scaffold to Reconstitute Mature Teicoplanin. Journal of the American Chemical Society, 2007, 129, 10082-10083.	13.7	47
34	Glycosylation of glycopeptides: a comparison of chemoenzymatic and chemical methods. Tetrahedron: Asymmetry, 2005, 16, 599-603.	1.8	13
35	Tailoring of Glycopeptide Scaffolds by the Acyltransferases from the Teicoplanin and A-40,926 Biosynthetic Operons. Chemistry and Biology, 2005, 12, 131-140.	6.0	55
36	Staphylococcus aureusSortase Transpeptidase SrtA: Insight into the Kinetic Mechanism and Evidence for a Reverse Protonation Catalytic Mechanismâ€. Biochemistry, 2005, 44, 11188-11200.	2.5	126

#	Article	IF	CITATIONS
37	A Systematic Investigation of the Synthetic Utility of Glycopeptide Glycosyltransferases. Journal of the American Chemical Society, 2005, 127, 10747-10752.	13.7	70
38	Assembly of the SIR Complex and Its Regulation by O -Acetyl-ADP-Ribose, a Product of NAD-Dependent Histone Deacetylation. Cell, 2005, 121, 515-527.	28.9	242
39	Analysis of the Substrate Specificity of the Staphylococcus aureus Sortase Transpeptidase SrtA. Biochemistry, 2004, 43, 1541-1551.	2.5	126
40	Inhibition of the Staphylococcus aureus sortase transpeptidase SrtA by phosphinic peptidomimetics. Bioorganic and Medicinal Chemistry, 2004, 12, 3723-3729.	3.0	41
41	Development of a high-performance liquid chromatography assay and revision of kinetic parameters for the Staphylococcus aureus sortase transpeptidase SrtA. Analytical Biochemistry, 2004, 326, 42-48.	2.4	91
42	Vinyl Sulfones:Â Inhibitors of SrtA, a Transpeptidase Required for Cell Wall Protein Anchoring and Virulence inStaphylococcus aureus. Journal of the American Chemical Society, 2004, 126, 3404-3405.	13.7	184
43	Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: Minimal structural requirements for intermolecular complexation and fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7384-7389.	7.1	78
44	Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers, 2002, 66, 261-284.	2.4	104
45	Functional Analysis of the Lipoglycodepsipeptide Antibiotic Ramoplanin. Chemistry and Biology, 2002, 9, 897-906.	6.0	56
46	Synthesis of P1-Citronellyl-P2- $\hat{l}\pm$ -d-pyranosyl pyrophosphates as potential substrates for the E. coli undecaprenyl-pyrophosphoryl-N-acetylglucoseaminyl transferase MurG. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 3107-3110.	2.2	24