Jay W Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10689385/publications.pdf

Version: 2024-02-01

131	8,190	53	86
papers	citations	h-index	g-index
135	135	135	5735
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon, 2005, 45, 969-985.	1.6	470
2	Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS Journal, 2008, 275, 3016-3030.	4.7	329
3	ADAM 12-S Cleaves IGFBP-3 and IGFBP-5 and Is Inhibited by TIMP-3. Biochemical and Biophysical Research Communications, 2000, 278, 511-515.	2.1	292
4	[21] Snake venom metalloendopeptidases: Reprolysins. Methods in Enzymology, 1995, 248, 345-368.	1.0	233
5	Degradation of extracellular matrix proteins by hemorrhagic metalloproteinases. Archives of Biochemistry and Biophysics, 1989, 275, 63-71.	3.0	211
6	Differential Proteomic Analysis Distinguishes Tissue Repair Biomarker Signatures in Wound Exudates Obtained from Normal Healing and Chronic Wounds. Journal of Proteome Research, 2010, 9, 4758-4766.	3.7	203
7	Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics, 2008, 8, 909-920.	2.2	192
8	Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. Journal of Proteomics, 2011, 74, 1781-1794.	2.4	187
9	Dickkopf Homolog 1 Mediates Endothelin-1-Stimulated New Bone Formation. Molecular Endocrinology, 2007, 21, 486-498.	3.7	169
10	Proteomic Analysis of Cattle Tick Rhipicephalus (Boophilus) microplus Saliva: A Comparison between Partially and Fully Engorged Females. PLoS ONE, 2014, 9, e94831.	2.5	165
11	Purification and characterization of trypsin from the poikilotherm Gadus morhua. FEBS Journal, 1989, 180, 85-94.	0.2	161
12	Nidogen mediates the formation of ternary complexes of basement membrane components. Kidney International, 1993, 43, 7-12.	5.2	161
13	Snake venom metalloproteinases: Structure, function and relationship to the ADAMs family of proteins. Toxicon, 1996, 34, 1269-1276.	1.6	159
14	A multifaceted analysis of viperid snake venoms by two-dimensional gel electrophoresis: An approach to understanding venom proteomics. Proteomics, 2005, 5, 501-510.	2.2	152
15	Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen and disintegrin-like structures. Biochemistry, 1992, 31, 6203-6211.	2.5	149
16	Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nature Communications, 2018, 9, 3598.	12.8	134
17	Function of Disintegrin-like/Cysteine-rich Domains of Atrolysin A. Journal of Biological Chemistry, 1997, 272, 13094-13102.	3.4	127
18	Approaching the Golden Age of Natural Product Pharmaceuticals from Venom Libraries: An Overview of Toxins and Toxin-Derivatives Currently Involved in Therapeutic or Diagnostic Applications. Current Pharmaceutical Design, 2007, 13, 2927-2934.	1.9	122

#	Article	IF	CITATIONS
19	Timeline of key events in snake venom metalloproteinase research. Journal of Proteomics, 2009, 72, 200-209.	2.4	121
20	Amino acid sequence and crystal structure of BaP1, a metalloproteinase from Bothrops asper snake venom that exerts multiple tissue-damaging activities. Protein Science, 2009, 12, 2273-2281.	7.6	110
21	A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon, 2013, 62, 75-82.	1.6	99
22	Novel insights into capillary vessel basement membrane damage by snake venom hemorrhagic metalloproteinases: A biochemical and immunohistochemical study. Archives of Biochemistry and Biophysics, 2006, 455, 144-153.	3.0	96
23	Molecular Cloning and Functional Analysis of Apoxin I, a Snake Venom-Derived Apoptosis-Inducing Factor withl-Amino Acid Oxidase Activityâ€. Biochemistry, 2000, 39, 3197-3205.	2.5	95
24	Stromal Expression of MMP-13 Is Required for Melanoma Invasion and Metastasis. Journal of Investigative Dermatology, 2009, 129, 2686-2693.	0.7	94
25	Amino acid sequence and disulfide bond assignment of myotoxin a isolated from the venom of prairie rattlesnake (Crotalus viridis viridis). Biochemistry, 1979, 18, 678-684.	2.5	93
26	Sequence and Biological Activity of Catrocollastatin-C: A Disintegrin-Like/Cysteine-Rich Two-Domain Protein fromCrotalus atroxVenom. Archives of Biochemistry and Biophysics, 1997, 343, 35-43.	3.0	87
27	Interaction of hemorrhagic metalloproteinases with human .alpha.2-macroglobulin. Biochemistry, 1990, 29, 1069-1074.	2.5	80
28	Comparison of indirect and direct approaches using ion-trap and Fourier transform ion cyclotron resonance mass spectrometry for exploring viperid venom proteomes. Toxicon, 2006, 47, 700-714.	1.6	80
29	Disintegrins from Snake Venoms and their Applications in Cancer Research and Therapy. Current Protein and Peptide Science, 2015, 16, 532-548.	1.4	80
30	Tissue Localization and Extracellular Matrix Degradation by PI, PII and PIII Snake Venom Metalloproteinases: Clues on the Mechanisms of Venom-Induced Hemorrhage. PLoS Neglected Tropical Diseases, 2015, 9, e0003731.	3.0	79
31	The Cysteine-rich Domain of Snake Venom Metalloproteinases Is a Ligand for von Willebrand Factor A Domains. Journal of Biological Chemistry, 2006, 281, 39746-39756.	3.4	78
32	Inhibition of Platelet Aggregation by the Recombinant Cysteine-Rich Domain of the Hemorrhagic Snake Venom Metalloproteinase, Atrolysin A. Archives of Biochemistry and Biophysics, 2000, 373, 281-286.	3.0	76
33	A Comprehensive View of the Structural and Functional Alterations of Extracellular Matrix by Snake Venom Metalloproteinases (SVMPs): Novel Perspectives on the Pathophysiology of Envenoming. Toxins, 2016, 8, 304.	3.4	76
34	Characterization of †basparin A,†a prothrombin-activating metalloproteinase, from the venom of the snake Bothrops asper that inhibits platelet aggregation and induces defibrination and thrombosis. Archives of Biochemistry and Biophysics, 2003, 418, 13-24.	3.0	75
35	Identification of sites in the cysteine-rich domain of the class P-III snake venom metalloproteinases responsible for inhibition of platelet function. FEBS Letters, 2003, 549, 129-134.	2.8	74
36	Mass spectrophotometric evidence for P-III/P-IV metalloproteinases in the venom of the Boomslang (Dispholidus typus). Toxicon, 2000, 38, 1613-1620.	1.6	73

#	Article	IF	Citations
37	Wound Exudate as a Proteomic Window to Reveal Different Mechanisms of Tissue Damage by Snake Venom Toxins. Journal of Proteome Research, 2009, 8, 5120-5131.	3.7	72
38	Role of Collagens and Perlecan in Microvascular Stability: Exploring the Mechanism of Capillary Vessel Damage by Snake Venom Metalloproteinases. PLoS ONE, 2011, 6, e28017.	2.5	71
39	Primary Structure and Functional Characterization of Bilitoxin-1, a Novel Dimeric P-II Snake Venom Metalloproteinase from Agkistrodon bilineatus Venom. Archives of Biochemistry and Biophysics, 2000, 378, 6-15.	3.0	70
40	<i>Bothrops jararaca</i> venom proteome rearrangement upon neonate to adult transition. Proteomics, 2011, 11, 4218-4228.	2.2	70
41	The Presence of the WGD Motif in CC8 Heterodimeric Disintegrin Increases Its Inhibitory Effect on αIlbβ3, αvβ3, and α5β1 Integrinsâ€. Biochemistry, 2002, 41, 2014-2021.	2.5	69
42	Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation. FEBS Journal, 2007, 274, 3611-3621.	4.7	66
43	Argininosuccinate Synthetase Is a Functional Target for a Snake Venom Anti-hypertensive Peptide. Journal of Biological Chemistry, 2009, 284, 20022-20033.	3.4	66
44	BJ46a, a snake venom metalloproteinase inhibitor. FEBS Journal, 2001, 268, 3042-3052.	0.2	65
45	Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis. PLoS ONE, 2012, 7, e37231.	2.5	65
46	A High Affinity Acceptor for Phospholipase A2 with Neurotoxic Activity Is a Calmodulin. Journal of Biological Chemistry, 2001, 276, 12493-12496.	3.4	60
47	Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor. Biochemical Journal, 2005, 391, 69-76.	3.7	60
48	cDNA Cloning and Characterization of Vascular Apoptosis-Inducing Protein 1. Biochemical and Biophysical Research Communications, 2000, 278, 197-204.	2.1	59
49	Alternagin-C, a Disintegrin-like Protein, Induces Vascular Endothelial Cell Growth Factor (VEGF) Expression and Endothelial Cell Proliferation in Vitro. Journal of Biological Chemistry, 2004, 279, 18247-18255.	3.4	59
50	Structural and Functional Analyses of DM43, a Snake Venom Metalloproteinase Inhibitor from Didelphis marsupialisSerum. Journal of Biological Chemistry, 2002, 277, 13129-13137.	3.4	58
51	Role of the snake venom toxin jararhagin in proinflammatory pathogenesis: In vitro and in vivo gene expression analysis of the effects of the toxin. Archives of Biochemistry and Biophysics, 2005, 441, 1-15.	3.0	57
52	The Reprolysin Jararhagin, a Snake Venom Metalloproteinase, Functions as a Fibrillar Collagen Agonist Involved in Fibroblast Cell Adhesion and Signaling. Journal of Biological Chemistry, 2002, 277, 40528-40535.	3.4	56
53	Expression, Activation, and Processing of the Recombinant Snake Venom Metalloproteinase, Pro-Atrolysin E. Archives of Biochemistry and Biophysics, 1996, 335, 283-294.	3.0	55
54	Recombinant domains of mouse nidogen-1 and their binding to basement membrane proteins and monoclonal antibodies. FEBS Journal, 2001, 268, 5119-5128.	0.2	55

#	Article	IF	CITATIONS
55	Adamâ \in 9 expression and regulation in human skin melanoma and melanoma cell lines. International Journal of Cancer, 2005, 116, 853-859.	5.1	54
56	New insights into the structural elements involved in the skin haemorrhage induced by snake venom metalloproteinases. Thrombosis and Haemostasis, 2010, 104, 485-497.	3.4	53
57	Characterization of a collagenolytic serine proteinase from the Atlantic cod (gadus morhua). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 110, 707-717.	1.6	51
58	Role of ADAM-9 Disintegrin-Cysteine-rich Domains in Human Keratinocyte Migration. Journal of Biological Chemistry, 2007, 282, 30785-30793.	3.4	50
59	Identification of the Cleavage Sites by a Hemorrhagic Metalloproteinase in Type IV Collagen. Matrix Biology, 1990, 10, 91-97.	1.7	48
60	[22] Atrolysins: Metalloproteinases from Crotalus atrox venom. Methods in Enzymology, 1995, 248, 368-387.	1.0	48
61	Viperid Envenomation Wound Exudate Contributes to Increased Vascular Permeability via a DAMPs/TLR-4 Mediated Pathway. Toxins, 2016, 8, 349.	3.4	48
62	Hemorrhagic Activity of HF3, a Snake Venom Metalloproteinase: Insights from the Proteomic Analysis of Mouse Skin and Blood Plasma. Journal of Proteome Research, 2012, 11, 279-291.	3.7	47
63	Proteomic identification of gender molecular markers in Bothrops jararaca venom. Journal of Proteomics, 2016, 139, 26-37.	2.4	47
64	The neurotoxic phospholipase A2 associates, through a non-phosphorylated binding motif, with 14-3-3 protein \hat{l}^3 and $\hat{l}\mu$ isoforms. Biochemical and Biophysical Research Communications, 2003, 302, 691-696.	2.1	45
65	Epitope Spreading and Autoimmune Glomerulonephritis in Rats Induced by a T Cell Epitope of Goodpasture's Antigen. Journal of the American Society of Nephrology: JASN, 2005, 16, 2657-2666.	6.1	43
66	High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry. Journal of Proteomics, 2011, 74, 401-410.	2.4	42
67	Proteomic anatomy of human skin. Journal of Proteomics, 2013, 84, 190-200.	2.4	42
68	An Experimentally Derived Database of Candidate Ras-Interacting Proteins. Journal of Proteome Research, 2007, 6, 1806-1811.	3.7	40
69	Unresolved issues in the understanding of the pathogenesis of local tissue damage induced by snake venoms. Toxicon, 2018, 148, 123-131.	1.6	40
70	Accelerated Wound Repair in ADAM-9 Knockout Animals. Journal of Investigative Dermatology, 2010, 130, 2120-2130.	0.7	39
71	Tissue pathology induced by snake venoms: How to understand a complex pattern of alterations from a systems biology perspective?. Toxicon, 2010, 55, 166-170.	1.6	39
72	Use of microarrays for investigating the subtoxic effects of snake venoms: insights into venom-induced apoptosis in human umbilical vein endothelial cells. Toxicon, 2003, 41, 429-440.	1.6	38

#	Article	IF	Citations
73	Novel Processed Form of Syndecan-1 Shed from SCC-9 Cells Plays a Role in Cell Migration. PLoS ONE, 2012, 7, e43521.	2.5	37
74	Activation of leukocyte rolling by the cysteineâ€rich domain and the hyperâ€variable region of HF3, a snake venom hemorrhagic metalloproteinase. FEBS Letters, 2008, 582, 3915-3921.	2.8	36
75	Proteomics of Wound Exudate in Snake Venom-Induced Pathology: Search for Biomarkers To Assess Tissue Damage and Therapeutic Success. Journal of Proteome Research, 2011, 10, 1987-2005.	3.7	36
76	Characterization of two hemorrhagic zinc proteinases, toxin c and toxin d, from western diamondback rattlesnake (Crotalus atrox) venom. BBA - Proteins and Proteomics, 1987, 911, 356-363.	2.1	35
77	Muscle Tissue Damage Induced by the Venom of Bothrops asper: Identification of Early and Late Pathological Events through Proteomic Analysis. PLoS Neglected Tropical Diseases, 2016, 10, e0004599.	3.0	35
78	The Interglobular Domain of Cartilage Aggrecan Is Cleaved by Hemorrhagic Metalloproteinase HT-d (Atrolysin C) at the Matrix Metalloproteinase and Aggrecanase Sites. Journal of Biological Chemistry, 1998, 273, 5846-5850.	3.4	34
79	The disulfide bond pattern of catrocollastatin C, a disintegrinâ€like/cysteineâ€rich protein isolated from <i>Crotalus atrox</i> venom. Protein Science, 2000, 9, 1365-1373.	7.6	34
80	Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain. Archives of Biochemistry and Biophysics, 2007, 457, 41-46.	3.0	34
81	Analysis of the subproteomes of proteinases and heparinâ€binding toxins of eight Bothrops venoms. Proteomics, 2009, 9, 733-745.	2.2	34
82	Simplified procedures for the isolation of HF3, bothropasin, disintegrin-like/cysteine-rich protein and a novel P-I metalloproteinase from Bothrops jararaca venom. Toxicon, 2009, 53, 797-801.	1.6	34
83	Proteomic profiling of snake venom metalloproteinases (SVMPs): Insights into venom induced pathology. Toxicon, 2009, 54, 836-844.	1.6	33
84	Isolation, Sequence Analysis, and Biological Activity of Atrolysin E/D, the Non-RGD Disintegrin Domain fromCrotalus atroxVenom. Archives of Biochemistry and Biophysics, 1998, 354, 239-246.	3.0	32
85	A Nephritogenic Peptide Induces Intermolecular Epitope Spreading on Collagen IV in Experimental Autoimmune Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 3076-3081.	6.1	32
86	Upregulation of IL-6, IL-8, CXCL1, and CXCL2 Dominates Gene Expression in Human Fibroblast Cells Exposed to Loxosceles reclusa Sphingomyelinase D: Insights into Spider Venom Dermonecrosis. Journal of Investigative Dermatology, 2007, 127, 1264-1266.	0.7	31
87	A New Family of Proteinases is Defined by Several Snake Venom Metalloproteinases. Biological Chemistry Hoppe-Seyler, 1992, 373, 381-386.	1.4	30
88	Ammodytase, a metalloprotease from Vipera ammodytes ammodytes venom, possesses strong fibrinolytic activity. Toxicon, 2007, 49, 833-842.	1.6	30
89	Comparisons of Two Proteomic Analyses of Non-Mucoid and Mucoid Pseudomonas aeruginosa Clinical Isolates from a Cystic Fibrosis Patient. Frontiers in Microbiology, 2011, 2, 162.	3.5	29
90	CXCL10 Acts as a Bifunctional Antimicrobial Molecule against Bacillus anthracis. MBio, 2016, 7, .	4.1	28

#	Article	IF	Citations
91	Identification of Protein Networks Associated with the PAK1â^'βPIXâ^'GIT1â^'Paxillin Signaling Complex by Mass Spectrometry. Journal of Proteome Research, 2006, 5, 2417-2423.	3.7	26
92	Amino acid sequence of a snake neurotoxin from the venom of Lapemis hardwickii and the detection of a sulfhydryl group by laser Raman spectroscopy. FEBS Letters, 1977, 80, 217-220.	2.8	24
93	Two coagulation factor X activators from Vipera a. ammodytes venom with potential to treat patients with dysfunctional factors IXa or VIIa. Toxicon, 2008, 52, 628-637.	1.6	24
94	Novel perspectives on the pathogenesis of Lonomia obliqua caterpillar envenomation based on assessment of host response by gene expression analysis. Toxicon, 2008, 51, 1119-1128.	1.6	24
95	Identification of actin beta-like 2 (ACTBL2) as novel, upregulated protein in colorectal cancer. Journal of Proteomics, 2017, 152, 33-40.	2.4	23
96	High-Molecular-Mass Receptors for Ammodytoxin in Pig Are Tissue-Specific Isoforms of M-Type Phospholipase A2 Receptor. Biochemical and Biophysical Research Communications, 2001, 289, 143-149.	2.1	21
97	Connectivity maps for biosimilar drug discovery in venoms: The case of Gila Monster Venom and the anti-diabetes drug Byetta®. Toxicon, 2013, 69, 160-167.	1.6	21
98	Stromal Fibroblast–Specific Expression of ADAM-9 Modulates Proliferation and Apoptosis in Melanoma Cells In Vitro and In Vivo. Journal of Investigative Dermatology, 2012, 132, 2451-2458.	0.7	20
99	Efficacy of IgG and F(ab′) ₂ Antivenoms to Neutralize Snake Venom-induced Local Tissue Damage as Assessed by the Proteomic Analysis of Wound Exudate. Journal of Proteome Research, 2012, 11, 292-305.	3.7	20
100	Mass spectrometric analysis identifies a cortactin–RCC2/TD60 interaction in mitotic cells. Journal of Proteomics, 2012, 75, 2153-2159.	2.4	18
101	Synthetic peptides of Goodpasture's antigen in antiglomerular basement membrane nephritis in rats. Translational Research, 2002, 139, 303-310.	2.3	17
102	Raman studies on bradykinin and a cyclic bradykinin. Peptides, 1982, 3, 193-198.	2.4	16
103	The neurotoxic secreted phospholipase A2 from the Vipera a. ammodytes venom targets cytochrome c oxidase in neuronal mitochondria. Scientific Reports, 2019, 9, 283.	3.3	16
104	Protein disulphide isomerase binds ammodytoxin strongly: Possible implications for toxin trafficking. Biochemical and Biophysical Research Communications, 2005, 329, 733-737.	2.1	15
105	Observation of Bothrops atrox Snake Envenoming Blister Formation from Five Patients: Pathophysiological Insights. Toxins, 2021, 13, 800.	3.4	15
106	The hydrolysis process and the quality of amino acid analysis: ABRF-94AAA collaborative trial. Techniques in Protein Chemistry, 1995, 6, 185-192.	0.3	14
107	COMPARISON OF SNAKE VENOM REPROLYSIN AND MATRIX METALLOPROTEINASES AS MODELS OF TNF-α CONVERTING ENZYME. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1219-1224.	2.2	14
108	Gene expression of inflammatory mediators induced by jararhagin on endothelial cells. Toxicon, 2012, 60, 1072-1084.	1.6	14

#	Article	IF	CITATIONS
109	Host Response to Human Breast Invasive Ductal Carcinoma (IDC) as Observed by Changes in the Stromal Proteome. Journal of Proteome Research, 2014, 13, 4739-4751.	3.7	14
110	Systemic vascular leakage induced in mice by Russell's viper venom from Pakistan. Scientific Reports, 2018, 8, 16088.	3.3	14
111	Proteomic Analysis of Human Blister Fluids Following Envenomation by Three Snake Species in India: Differential Markers for Venom Mechanisms of Action. Toxins, 2019, 11, 246.	3.4	14
112	Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Review of Proteomics, 2018, 15, 967-982.	3.0	13
113	Laser Raman spectroscopic analysis of angiotensin peptides' conformation. Archives of Biochemistry and Biophysics, 1980, 201, 375-383.	3.0	12
114	Immune response to native NadA from Neisseria meningitidis and its expression in clinical isolates in Brazil. Journal of Medical Microbiology, 2003, 52, 121-125.	1.8	12
115	Analysis of wound exudates reveals differences in the patterns of tissue damage and inflammation induced by the venoms of Daboia russelii and Bothrops asper in mice. Toxicon, 2020, 186, 94-104.	1.6	10
116	Amino terminal sequence of the bacteriophage T5-coded gene A2 protein. Biochemical and Biophysical Research Communications, 1982, 106, 265-269.	2.1	8
117	Pseudomonas aeruginosaand a Proteomic Approach to Bacterial Pathogenesis. Disease Markers, 2001, 17, 285-293.	1.3	7
118	New Proteases from Crotalus Atrox Venom. Toxin Reviews, 1983, 2, 161-204.	1.5	5
119	Structural features of the reprolysin atrolysin C and tissue inhibitors of metalloproteinases (TIMPs) interaction. Biochemical and Biophysical Research Communications, 2006, 347, 641-648.	2.1	4
120	Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José MarÃa Gutiérrez. Toxins, 2017, 9, 33.	3.4	4
121	Loss of ADAM9 Leads to Modifications of the Extracellular Matrix Modulating Tumor Growth. Biomolecules, 2020, 10, 1290.	4.0	3
122	Amino Acid Analysis of Phospho-Peptides: Abrf-93AAA. Techniques in Protein Chemistry, 1994, 5, 231-240.	0.3	2
123	Announcing the 2018 Toxins Travel Awards for Post-Doctoral Fellows. Toxins, 2018, 10, 46.	3.4	1
124	Phostensin enables lymphocyte integrin activation and population of peripheral lymphoid organs. Journal of Experimental Medicine, 2022, 219, .	8.5	1
125	Snake Toxins and Endothelium. , 0, , 461-470.		0
126	Biological Activities and Assays of the Snake Venom Metalloproteinases (SVMPs)., 2016,, 211-238.		0

#	Article	IF	CITATIONS
127	Atrolysin C. , 2004, , 671-673.		O
128	Atrolysin B. , 2004, , 670-671.		0
129	Horrilysin., 2004,, 681-682.		O
130	Atrolysin E. , 2004, , 674-676.		0
131	Atrolysin A. , 2004, , 668-670.		0